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Specific Nucleus as the Transition State for Protein Folding: Evidence from the 
Lattice Model? 
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ABSTRACT: W e  have studied the folding mechanism of lattice model 36-mer proteins. Using a simulated 
annealing procedure in sequence space, we have designed sequences to have sufficiently low energy in a 
given target conformation, which plays the role of the native structure in our study. The sequence design 
algorithm generated sequences for which the native structures is a pronounced global energy minimum. 
Then, designed sequences were subjected to lattice Monte Carlo simulations of folding. In each run, starting 
from a random coil conformation, the chain reached its native structure, which is indicative that the model 
proteins solve the Levinthal paradox. The folding mechanism involved nucleation growth. Formation of 
a specific nucleus, which is a particular pattern of contacts, is shown to be a necessary and sufficient 
condition for subsequent rapid folding to the native state. The nucleus represents a transition state of 
folding to the molten globule conformation. The search for the nucleus is a rate-limiting step of folding 
and corresponds to  overcoming the major free energy barrier. We also observed a folding pathway that 
is the approach to  the native state after nucleus formation; this stage takes about 1% of the simulation time. 
The nucleus is a spatially localized substructure of the native state having 8 out of 40 native contacts. 
However, monomers belonging to the nucleus are  scattered along the sequence, so that several nucleus 
contacts are long-range while other are short-range. A folding nucleus was also found in a longer chain 
80-mer, where it also constituted 20% of the native structure. The possible mechanism of folding of designed 
proteins, as well as the experimental implications of this study is discussed. 

Theoretical studies of the thermodynamics and dynamics 
of protein folding have been reviewed recently in Karplus and 
Shakhnovich (1992). The authors pointed out that different 
approaches should be taken to study different parts of 
configurational space. The neighborhood of the native state 
and the dynamics of thermal fluctuations around this state 
can be studied in detail using an all-atom representation of 
a protein and applying molecular dynamics to simulate the 
system. The simplistic point of view would be to extend these 
calculations further to explore more of the configurational 
space and to also address the folding problem. However, this 
is impossible due to the obvious time limitations of such 
calculations. This implies that simplified models should be 
used to study folding. These models should be adequate to 
the problem, but free of details that are relevant on time and 
length scales much smaller than the ones at which interesting 
folding events occur. The adequacy of a model for the folding 
problem requires that model proteins possess a unique structure 
that is thermodynamically stable at physiological tempera- 
tures. The model should have the Levinthal paradox, Le., an 
astronomically large number of conformations that cannot be 
scanned exhaustively in a folding simulation. 

The idea of “preaveraging” irrelevant fast degrees of 
freedom leads to low-resolution models such as “beads on a 
string” (Lifshitz et al., 1978) or closely related lattice models 
(Ueda et al., 1978; Shakhnovich & Gutin, 1990a; Cove11 & 
Jernigan, 1990; Lau & Dill, 1989; Skolnick & Kolinski, 
1990a,b). In such models, a group of atoms of a protein is 
represented by one effective monomer; one could visualize 
this as a C, representation of protein folds. These models 
capture important aspects of the protein folding problem: an 
astronomically large number of conformations, the polymeric 
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structure of the chain, and the chain heterogeneity [monomers 
(although represented by structureless “beads”) may be of 
different types manifested by interresidue interactions of 
different strengths and signs]. The identity of a model protein 
is determined by the sequence of monomers. How can one 
study the folding of such model proteins? The key requirement 
is that simulations be unbiased to the native state and converge 
repetitively to one conformation independent of initial 
conditions-just as real proteins do. 

The straightforward and desirable approach to folding 
proteins even within simplified models is to use the natural 
amino acid sequences of some moderately sized proteins and 
simulate their folding by Monte Carlo or molecular dynamics 
(Wilson & Doniach, 1989; Skolnick & Kolinski, 1990b). 
However, the major problem with this approach is that protein 
sequences may have been evolutionarily designed to satisfy 
folding requirements with a certain “exact” force field. 
Simulations necessarily use some approximate force field for 
which the native structure may be neither a global nor a 
pronounced kinetically accessible local minimum. When the 
force field is not completely adequate, the natural sequence 
is effectively random. Therefore, in order to explore this 
avenue, knowledge of the precise force field is necessary. The 
attempts to overcome this difficulty were based on the 
introduction of certain biases [e.g., making only the native 
contacts favorable (Ueda et al., 1978) or forcing the chain to 
acquire native secondary structure (Skolnick & Kolinski, 
1990b)l. However, model Hamiltonians where such biases 
are introduced are somewhat unphysical. 

A possible approach to unbiased simulations is to study 
short chains for which some subset of conformations can be 
enumerated. Then a nonspecific parameter, such as the 
average attraction between monomers, can be chosen in such 
a way that the global minimum would belong to this 
enumerated subset and therefore is known. Folding simula- 
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tions would reveal whether this conformation of the global 
minimum is accessible or not. 

This approach was taken by Shakhnovich et al., (1991) to 
study 27-mer chains on a simple cubic lattice and later by 
Miller et al. (1992) and Camacho and Thirumalai (1993) for 
2-dimensional lattices. The folding of model proteins in these 
works was studied by lattice Monte Carlo simulations (Verdier, 
1973; Hilhorst & Deutch, 1975). The important result 
obtained by Shakhnovich et al. (1991) is that folding and 
nonfolding sequences exist. The detailed analysis based on 
folding simulations for 200 random sequences (Sali et al., 
1994) showed that the difference between folding and 
nonfolding sequences is that folding sequences had as their 
native structure a pronounced global energy minimum (Sali 
et al., 1994). Unfortunately, such an approach cannot be 
extended beyond 27-mer chains in three dimensions because 
the computational complexity of enumeration grows dramati- 
cally as chain length increases. However, it is clear that one 
should not necessarily enumerate all conformations; what is 
really very important is to know the global minimum 
conformation and its relation (in energy scale) to the multitude 
of remaining conformations. 

This leads to the idea of combining design and folding to 
study the folding of longer protein size chains. The idea is 
simple: to design a sequence that will deliver sufficiently low 
energy to a given structure, so that one can be certain that 
this “target” structure represents a pronounced global mini- 
mum for this sequence. The specific choice of force field is 
not essential at this stage, provided that thedesign of a sequence 
satisfying the conditions mentioned above is possible with this 
force field. This sequence then can be subjected to a folding 
simulation with the same force field that was used at the 
design stage. At this point, one can hope that the simulation 
will converge to the target conformation for which the sequence 
was designed. The key idea here is to use the same force field 
for the folding simulation and for sequence design. This allows 
us to address the fundamental questions of protein folding 
separately from the practically very important but difficult 
question of which force fields are the most appropriate to 
study real proteins. 

A step in this direction was made in a recent work by O’Toole 
and Panagiotoupoulos (1992) in which symmetric native 
structures and a simplified 2-letter, H P  (hydrophobic, polar), 
representation of protein sequences were used. The design 
was based on the requirement to place more hydrophobic 
groups inside and hydrophilic groups outside. However, this 
attempt was not successful for longer chains since the designed 
sequences did not fold to their target structures. This is likely 
due to the deficiency of the 3-dimensional, 2-letter H P  model, 
which does not have a stable unique conformation of the global 
energy minimum (Shakhnovich, 1994). 

The idea of combining design and folding was realized 
successfully recently when an effective sequence design 
algorithm based on a Monte Carlo (MC) optimization 
procedure in sequence space became available (Shakhnovich 
& Gutin, 1993a,b). This made it possible touse a more realistic 
sequence representation of monomers of 20 types and allowed 
lattice model folding of proteins of different lengths (36-100) 
(Shakhnovich, 1994). This approach provides a unique 
opportunity to study the mechanism by which model proteins 
solve their folding problems, which is by no means simpler 
than that of real proteins. Indeed, the shortest of the model 
proteins we worked with is a 36-mer, which has 4.6835 - 
conformations (Sykes, 1963), too large a number to be scanned 
exhaustively. (For 100-mers, which also fold in our simula- 
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tions, this number is 1075!) Since we eventually can trace any 
intermediate conformation in the simulation, a very detailed 
study of the mechanism of folding can be done for the model 
proteins. 

The statistical mechanics of proteins with designed se- 
quences was discussed by Shakhnovich and Gutin (1993a), 
who showed that the sequences undergo a first-order folding 
transition to the native state. [For the qualitative explanation 
of the nature of first-order transitions in biomolecules, see 
Karplus and Shakhnovich (1 992).] The phenomenological 
model of Bryngelson and Wolynes (1987), where the idea of 
design was encapsulated in the “principle of minimal frustra- 
tion”, also implied that transition to the native state may have 
first-order character. But the mechanism of first-order 
transitions is known to involve nucleation and growth (Lifshitz 
& Pitaevskii, 1981). Therefore, it is natural to expect the 
nucleation growth mechanism of protein folding. 

The idea of a nucleation growth mechanism in protein 
folding was suggested by Levinthal in a largely unavailable 
publication (Levinthal, 1969) and was pursued in the 
subsequent work of Tsong et al. (1972) on the basis of kinetic 
analysis of experimental data and by Wetlaufer (1973) on the 
basis of observation of existing protein structures. The 
nucleation mechanism was also discussed in a recent work 
(Mault & Unger, 1992). In theseworks, thenucleationgrowth 
mechanism was based on phenomenological models, and 
detailed microscopic study to support or reject this hypothesis 
was missing. In this study, we suggest a detailed microscopic 
analysis on the basis of the lattice model of protein folding. 

METHODS 

We use a 36-mer chain on a cubic lattice as a basic model 
(some results for longer chains will be sketched in the 
Discussion). We tried two different arbitrarily chosen compact 
native structures in order to determine which conclusions 
depend on the structural features of the native state and which 
are independent of it (Figure 1). The next step was to design 
a sequence that fits the native structure with a low energy. To 
this end, we used a MC optimization algorithm in sequence 
space, documented in detail by Shakhnovich and Gutin 
(1993a,b). 

The energy function that we used throughout this work is 
taken in the nearest-neighbor approximation (Miyazawa & 
Jernigan, 1985): 

where N = 36 is the total number of monomers and A defines 
the contact potential between them: A(r)  = 1 if rlow < r < 
rhigh and A(r)  = 0 otherwise. Our model protein is positioned 
on a simple cubic lattice with bond length of 3.8 A. The 
target native conformation is set through the coordinates of 
its monomers (rnative). Any two monomers that are 3.8 A 
apart (so that, say, rlOw = 3.7 A and rhigh = 3.9 A) areconsidered 
to be in contact. For the set of potentials V(aiu,), we used 
parameters determined by Miyazawa and Jernigan (1985) 
(MJ) from the statistical distribution of contacts in native 
proteins. The sequence design algorithm was run at low 
selective temperature [see Shakhnovich and Gutin (1993a)], 
Tsel = 0.2, to provide sequences that fit the native structure 
with sufficiently low energy. 

The MC procedure in sequence space requires the initial 
setting of amino acid composition. We tried several choices. 
First we designed proteins with an “average” amino acid 
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SQKWLERQATRIADGDLPVNGTYFSCKIMENVXPLA 
GTDLYRDGLNENYRQRYAVSTFVPQPDPIHmLQP 
PDHLLDRYSTRWDGESYTNTTSRILERCSLAA 

b 

OPVQNDINIEHLSAGDPGRFCWLYKVMERTSLAAKT 

FIGURE 1: Target conformations used in this study. Sequences are 
shown that fit the corresponding conformations with sufficiently low 
energy to make sure that these conformations are global energy 
minima for thedesigned sequences. We worked with threesequences 
designed for structure a and one sequence designed for structure b. 
Most calculations were done with structure a; however, for the sake 
of control the nucleus was also determined for structure b. Dashed 
lines denote contacts belonging to the nucleus. 

composition taken from Table 1.1 of Creighton (1992). 
Another choice was to take a composition like that of the 
small 36-residue protein pancreatic bird polypeptide (1 ppt). 

Since we are using MJ parameters that were obtained from 
protein statistics, we have only relative energy and do not 
know the absolute energy scale for this set of parameters 
(Finkelstein et al., 1993). So we use the energy unit at  which 
DU = 1, where DU = (((G) - (U)2))1/2 is the standard 
deviation of the energy of different interactions; this is the 
measure of their heterogeneity. ( ) denotes averaging over 
all possible pairwise interactions in the given sequence: 

2 N  

N ( N -  1) isj 
(L“) = C L “ ( g i g j )  (2) 

The design procedure generated a number of sequences; we 
intensively studied the ones shown in Figure 1. 

The lattice Monte Carlo simulations of the folding of 
designed sequences are done with a standard algorithm well 
documented in earlier works (Verdier, 1973; Hilhorst & 
Deutch, 1975; Sali et al., 1994). The standard move set was 

taken to include corner flips and crankshaft motions (Hilhorst 
& Deutch, 1975). The Metropolis criterion with the energy 
function (eq 1) was used (Metropolis et al., 1953) to accept 
or reject moves. 

To measure the structural similarity between a current 
conformation and the native state, we used the similarity 
parameter Q (Shakhnovich & Gutin, 1989a,b, 1990a), which 
is the normalized number of native contacts in a conformation: 

e=---- Nnativc 

Ntotal 

where Ntotal is the number of contacts in the compact 
conformation; Ntotal = 40 for the 36-mer. It follows from this 
definition that Q = 1 in the native state. 

Simulations started from the random coil (see an example 
in Figure 2) and ended when the native target structure was 
reached (Figure 3). The mean first passage time for reaching 
the native state was - lo6 Monte Carlo steps at  T = 0.90, at  
which all simulations reported in this work were performed. 
The native conformation (shown in Figure la,b for cor- 
responding sequences) had the lowest energy among all 
conformations found in the simulations. To test this, a long 
simulation of lo9 Monte Carlo steps was run to make sure 
that no other structures with energy equal to or lower than 
the energy of the native structure were encountered. This 
was indeed the case, which made us sufficiently confident 
that the native is the global minimum of energy. 

SEARCH FOR THE NUCLEUS 

Exploring implications of the first-order transition kinetics 
of folding we expect that the chain overcomes the main free 
energy barrier via a nucleation growth mechanism. There 
are two slightly different definitions of nuclei in the kinetics 
of the first-order transitions (Lifshitz & Pitaevskii, 198 1). 
The critical nuclei correspond to transition states (free energy 
barriers). There is a probability of roughly 1 / 2  that the new 
phase will grow further after the critical nucleus is formed 
and a probability of 1/2 that it will dissolve. One can also 
define a postcritical nucleus, Le., the minimal sized fragment 
of the new phase that inevitably grows further to the new 
phase. Certainly there is no great difference between the two 
ways of defining the nucleus because the postcritical nucleus 
simply should have energy a few kBT lower than the critical 
one, the barrier state, in order to make the subsequent growth 
unidirectional and irreversible. In our study, we will be 
interested in postcritical nuclei, Le., ones that subsequently 
grow into the folded state. 

The main difficulty in finding a nucleus comes from the 
fact that they are very short-lived before they grow further 
into the native or near-native conformation. By no means 
should they be confused with intermediates that are long- 
lived and detectable because they are sufficiently deep local 
minima. We define a nucleus as a set of contacts that satisfies 
the following two conditions: (i) Formation of a nucleus is 
a sufficient condition for folding; i.e., after a set of contacts 
that constitutes the nucleus is formed, the subsequent folding 
is guaranteed and is very fast (in our search for a nucleus we 
required that folding should take place in less than 50 000 
MC steps after the nucleus is formed). We are therefore 
looking for postcritical nuclei. (ii) Formation of a nucleus is 
a necessary condition for folding; Le., the pattern of contacts 
corresponding to the nucleus is always present in “prefolding 
conformations” when the number of nativecontacts is relatively 
small, but subsequent folding is very fast. 
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FIGURE 2: Example of a starting random coil conformation. 
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FIGURE 3: Example of a folding trajectory starting in the random 
coil conformation and ending in the native state. Such types of 
trajectories were used throughout this study. 

The last condition requires some explanation. It is trivial 
that in the vicinity of the native state where Q - 1, some 
contacts will consistently appear just before the native state 
is reached. What we are interested in is the minimal set of 
contacts that must be formed before folding proceeds to the 
native state. To this end, we should analyze conformations 
that are not too close to the native state. As inspection of 
Figure 3 suggests, in the largest part of the trajectory the 
chain is fluctuating in conformations with Q not exceeding 
0.6. This means that we should search for nuclei by analyzing 
sets of contacts that are present in conformations belonging 
to steep parts of the trajectory (Figure 4) but that are 
structurally different from the native state. To this end, we 
analyzed all conformations with Q < 0.6 (see Figure 4) that 
are separated by less than 50 000 Monte Carlo steps from the 
final step of the simulation when the native state was reached. 
The data were collected over 10 runs, each starting from a 
random coil and ending in the native conformation. Our 
analysis was aimed at  revealing the set of contacts common 
to all 10 runs. 

We discovered that rapid folding always takes place after 
the formation of a distinct set of eight contacts (shown by 
dashed lines in Figure l a )  for the first target structure and 
nine contacts for the second target structure (Figure 1 b). We 
can see that contacts forming the nucleus are located in the 

0.2 7 
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MC-Step 
FIGURE 4: Part of the folding trajectory from Figure 3 used to search 
for the nucleus. The horizontal line illistrates the criterion Q < 0.6 
for the choice of conformations relevant to the search for the nucleus. 

native structure in the vicinity of each other, not in random 
positions. These contacts form a spatially localized substruc- 
ture, which serves as a nucleus for folding. The formation of 
this set is indeed both necessary and sufficient for fast folding. 
I t  is the necessary condition because this set of contacts is 
formed for the first time only several thousand Monte Carlo 
steps before the native state is reached and in conformations 
for which the number of native contacts is relatively small 
(less than 25 out of 40). It was also a sufficient condition 
because after the nucleus had been formed the native state 
was always reached in less than 50 000 Monte Carlo steps, 
or about 1% of the total Monte Carlo time of folding from a 
random conformation. 

Another important finding was that the position of the 
nucleus was nonspecific to the sequence chosen: for all three 
sequences shown in Figure la,  the position of the nucleus was 
the same. We analyzed folding trajectories for 30 more 
sequences designed to have the native structure, as shown in 
Figure la ,  and found that in all these trajectories formation 
of the nucleus shown in Figure l a  preceded subsequent fast 
folding to the native state. To avoid confusion here, we should 
stress that although these sequences are nonhomologous, they 
are not independent either: they were all designed to have 
the structure shown in Figure l a  as the global minimum 
conformation. 
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a 

b 

FIGURE 5 :  (a) Exampleof a starting conformationcontaining nucleus 
contacts. Otherwise the conformation was random. (b) Control: 
Starting conformation containing the same number of native-like 
contacts as in a, but without nucleus contacts. 

EXPLORING THE NUCLEATION MECHANISM 

As the first test of the proposed nucleation mechanism, we 
studied folding trajectories that started from a conformation 
with a preformed nucleus; otherwise this conformation was 
completely random and noncompact (see Figure 5a). It 
contained about ten native contacts (eight belonging to the 
nucleus and two randomly formed). Therefore, Q = 0.25 in 
a startingconformation. When simulations were started from 
conformations with the preformed nucleus, as shown in Figure 
5a, the native state was reached quickly (on average in less 
than in 30 000 MC steps, and in many runs in less than in 
1000 MC steps). The time course of a typical simulation, 
which started from a conformation with a preformed nucleus 
is shown in Figure 6. 

However, the question may arise whether fast folding from 
a conformation with a preformed nucleus is due to formation 
of the nucleus or whether any eight native contacts in the 
starting conformations provide such fast folding. In order to 
address this issue, we ran a control experiment starting from 
several conformations that contained at least eight native 
contacts but that were different from the nucleus ones (see 

0 2000 4000 6000 8000 loo00 

MC-Step 

FIGURE 6: Typical folding trajectory for runs that start from a 
conformation with a preformed nucleus, as shown in Figure 5a. 
an example of such starting conformation in Figure 5b). In 
all of these control experiments, the folding trajectories were 
practically indistinguishable from the ones that started from 
completely randomized conformations (Figure 3) .  The folding 
time distribution was unaffected by the choice of initial 
conformation in this case and yielded the same mean first 
passage folding time as before of close to 1 million MC steps. 
This can be rationalized if we look at any arbitrary trajectory 
that startsfromarandomcoil(Figure3). In fact, 8-lonative- 
like contacts (Le., conformations with Q = 0.2-0.25) are 
formed at the very beginning of the simulation (in less than 
100000 MC steps). However, this does not lead to rapid 
folding: a few million more steps are required to reach the 
native structure. Only formation of the specific subset of 
contacts, the nucleus, results in rapid folding. 

As was mentioned before, formation of the postcritical 
nucleus corresponds to the transition over the main free energy 
barrier. This implies that there must be a significant difference 
in folding mechanism when the simulations start from 
completely randomized conformations and when they start 
from a conformation with a preformed nucleus, as shown in 
Figure 5a. In the first case, one should expect that the rate- 
limiting stage is overcoming the main barrier or formation of 
the nucleus, while in the latter case the motion to the native 
state would be downhill in free energy space, representing an 
effective pathway or funnel (Leopold et al., 1992). 

To test this, we compared the statistical characteristics of 
the folding process in both cases. In the case where folding 
started from a random conformation, we evaluated at each 
trajectory, after each 1000 MC steps, the number of all current 
contacts b) as well as the number of the native contacts ( x ) .  
The frequency with which specific pairs (x,y) were found in 
10 folding trajectories was evaluated to calculate the prob- 
ability P(x,y)  of finding a conformation withy contacts, x of 
which are the native ones. These results are illustrated in 
Figure 7a. Both x and y can take values from 0 to 40, and 
412 = 1681 dots correspond to 1681 possible pairs of x and 
y .  The higher P(x,y), the lighter the corresponding dot on 
Figure 7. 

We should note here that our experiments were aimed at  
the estimation of the mean first passage time, and therefore 
simulations ended when the native conformation had been 
reached. This explains the apparent low population of the 
native state in Figure 7 .  In fact, the native state was rather 
stable at that temperature, having (Q) = 0.8 where ( ) denotes 
thermal averaging over long (equilibrium) trajectories. 

One can see that conformations with approximately 25 total 
and 15 native contacts are most frequent. This is certainly 
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Number of Native Contacts 
FIGURE 7: Density plots illustrating the frequencies with which conformations having a specified number of native contacts (abscissa) and 
total number of contacts (ordinate) are found in simulations. The brighter the dot with coordinates (x,y), the more frequently conformations 
with x total and y native contacts were found. (a) Simulations starting from completely random conformations; (b) simulations starting from 
conformations with a preformed nucleus, as shown in Figure 5a. 

a prebarrier minimum of free energy or a folding intermediate. 
Conformations with more than 30 native contacts are rare. 
This means that the chain spends most of its folding time 
fluctuating around the intermediate state until it reaches a 
conformation(s) corresponding to the free energy barrier, after 
which folding is fast. The computer experiments described 
earlier show that this is the set of conformations containing 
the nucleus. 

The same calculations were performed when folding started 
from conformations that contained a preformed nucleus, as 
shown in Figure 5a. The only difference was that the numbers 
of native and all contacts, x and y, were evaluated at each 
tenth Monte Carlo step because the folding time was 
substantially smaller. The results are illustrated in Figure 
7b. There is a clear difference between the plots shown in 
Figure 7a,b. In the case of folding from a preformed nucleus, 
the number of native contacts is very strongly correlated with 
the number of all contacts, as the light area on Figure 7b is 
stretched along the main diagonal x = y. It is also important 
to note that there is no maximum of P(x,y) on Figure 7b, and 
we can see that P(x,y) is approximately constant in the area 
close to the diagonal x = y and vanishes everywhere else, 
which implies that in this case the chain is not wandering 
randomly through conformational space but folds quickly, 
increasing the number of native contacts at an approximately 
constant rate (a clear indication of the propagation mecha- 
nism). Of course the polypeptide chain still has a tremendous 
number of conformations, but the constant value of P(x,y) 
suggests that a directed assembly takes place after the nucleus 
is formed. Thus, the addition of any native contact decreases 
free energy, and this driving force directs the process. No 
significant free energy barriers are found in this part of the 
configurational space. 

We studied the role of the nucleus in the initiation of folding 
in our model. However, for conformations with a nucleus, 
proximity to the transition state may also play an important 
role in unfolding. To this end, we studied longer trajectories, 
during which several folding-unfolding events occurred 
(Figure 8). Inspection of these trajectories reveals two possible 
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FIGURE 8: Part of a longer trajectory containing local unfolding 
events shown by arrows and global unfolding shown by the bracket. 
Local unfolding is as deep as the global one; however, locally unfolded 
conformations usually refold in less than 20 000 MC steps. 

scenarios of transient unfolding. The first type of behavior 
corresponds to significant unfolding (up to Q = 0.2), but after 
10000-20000 MC steps the chain refolded back. Such 
unfolded conformations after which the chain refolds quickly 
will be called locally unfolded. However, sometimes the same 
degree of unfolding to Q = 0.2 led to more dramatic 
consequences: a few million MC steps were required for the 
chain to refold (see Figure 8). Conformations that required 
such a long time to refold will be called globally unfolded. 

Thequestion then is what is the difference between globally 
and locally unfolded conformations? We studied 10 different 
long (up to 100 million MC steps) folding trajectories (part 
of one is shown in Figure 8) and examined all locally unfolded 
conformations with less than 16 native contacts. We found 
that all of these conformations contained the intact nucleus, 
while globally unfolded conformations missed contacts from 
the nucleus. An implication of this observation is that although 
fluctuations in the folded state are significant, some contacts 
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FIGURE 9: (a) Dependence of the log of MFPT of folding on the energy of the native state for a number of sequences having different energy 
of nucleus contacts and the same total energy of the other contacts. (b) Same dependence but for the set of sequences having the same energy 
of nucleus but different total energy of remaining contacts. 

are more stable than others-a clear indication of the 
heterogeneity of the folded conformation in our model, which 
we relate to the molten globule state in proteins (see the 
Discussion section). This result shows also that there is no 
other nucleation site in our chains. If there were, we would 
see either of the nucleation sites preserved in locally unfolded 
conformations, but we definitely see (repetitively) only one 
subset of contacts common to all locally unfolded conforma- 
tions. We note, however, that this conclusion is drawn for 
36-mer chains, and it is certainly possible that longer chains 
may have multiple nucleation sites. A very interesting 
question, then, isat what sizeofthechain (ifany) thenucleation 
regime changes from one nucleus to multiple nuclei. 

The next issue we addressed was the dependence of the 
folding time on the interaction energy of the contacts 
constituting the nucleation site. To this end, using the same 
design procedure (Shakhnovich & Gutin, 1993a,b), we selected 
a set of sequences having a different total energy for the 8 
nucleus contacts but a similar total energy for the remaining 
32nativecontacts. Theobjective was tostudy how the stability 
of the nucleus affects the rate of folding. The result is presented 
in Figure 9a, where dependence of the logarithm of the folding 
time on the total energy of the native conformation, normalized 
by kT, is shown. We would like to emphasize that although 
we plot the mean folding time vs the total energy of the native 
conformation, the sequences corresponding to the different 
data points in Figure 9a differ by the energy of nucleus contacts 
only, having similar energy for the remaining contacts in the 
native conformation. The dependence presented in Figure 9a 
is close to linear with a slope of 0.8. This should be contrasted 
with the results of a control experiment in which sequences 
were chosen to have similar energy for nucleus contacts and 
differ in energy for the remaining contacts (Figure 9b). In 
this case, the dependence of log(time) on the energy of the 
structure is also close to linear, but the slope is half as great 
(0.4). This indicates that stabilization of the nucleus is more 

important for rapid folding than the stabilization of other 
contacts, although the latter may indirectly stabilize the 
nucleus, decreasing the entropic cost of its formation. This 
gives rise to the acceleration of folding in that case. 

DISCUSSION 

In this section, we will discuss two aspects of the present 
study. First, we discuss the lattice model results and their 
implications. In the second part of the Discussion, we will 
discuss the applicability of simplified lattice models to the 
study of the folding of real proteins: features that lattice models 
catch and features that they miss. 

In this paper, we have provided a body of evidence that the 
folding mechanism of lattice proteins involves the formation 
of a specific nucleus as a transition state, with its subsequent 
growth. This is not at all unexpected because nucleation 
growth is a standard mechanism of cooperative (first-order) 
transitions; for instance, the vapor-liquid transition is well 
known to involve a nucleation growth stage (Lifshitz & 
Pitaevskii, 198 1). There is, however, an essential difference 
between the nucleation growth mechanism in simple liquids 
and that in model proteins. In liquids a nucleus is nonspecific 
and is fully characterized by its size. In model proteins the 
nucleus is specific, which means that a particular set of 
contacts, constituting a transition state, should be formed to 
cause subsequent fast folding to the native state. 

The folding process in each molecule involves two stages, 
which we can characterize as stochastic and deterministic. 
The stochastic stage is rate-limiting (the stage at  which the 
nucleus is formed via random search). Of course this does 
not imply that the protein should "wait" for a multiparticle 
collision to form the nucleus. Since the nucleus is a 
substructure of the native state, its contacts are attractive and 
therefore the partly formed nucleus does not disappear. The 
possibility of a stochastic search to form nuclei was pointed 
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out by Wetlaufer (1973). Thestochasticsearch for thenucleus 
takes place in the intermediate that is formed at the burst 
stage of the folding process (in less than 30 000 M C  steps). 
This burst intermediate can be seen as a light area on Figure 
7a as a partly compact state (having 20 out of 40 contacts, 
10-12 of which are the native ones). This intermediate 
represents a multitude of rapidly interconverting conforma- 
tions, corresponding to a prebarrier free energy minimum. 
Formation of a burst semicompact intermediate precedes the 
formation of a nucleus, which is formed later when native 
contacts in the intermediate include, for the first time, the 
nucleus ones. 

The subsequent folding, after the nucleus is formed, is fast 
and practically unidirectional. This is not surprising because 
formation of a nucleus is equivalent to overcoming the main 
free energy barrier. We observe a foldingpathway that is the 
postnucleus assembly of the protein associated with the directed 
motion downhill in free energy. Indeed, as inspection of Figure 
7b suggests, the number of native contacts grows steadily 
with the increase of the total number of contacts, i.e., roughly 
speaking, in this regime every added contact is a native one. 
It can also be seen that the chain does not encounter, at this 
temperature, significant barriers as it progresses through the 
pathway; the motion in configurational space is rather 
diffusion-like. The evidence for this is the approximate 
constant density in the light region of the diagram of Figure 
7b. 

It was suggested in previous works, implicitly (Wetlaufer, 
1973) or explicitly (Rooman et al., 1992a,b), that at least a 
considerable part of the nucleus should be formed by contacts 
between residues that are close to each other in sequences 
(local contacts). Our analysis is consistent with these 
assertions. Inspection of Figure 1 shows that the nucleus is 
formed by both long-range as well as short-range contacts, 
with some predominance of the long-range contacts. However, 
the relation between the numbers of short-range and long- 
range contacts in the nucleus may depend on the potential 
chosen since the local component of the potential may increase 
the number of local contacts in the nucleus. This question 
requires further study. We believe, however, that some long- 
range contacts must always be present in the nucleus since 
such contacts are most effective in decreasing entropy of the 
transition state and thus creating an “entrance” to the pathway. 

The results reported in the present paper were obtained for 
the 36-mer model proteins. A very important question is 
whether these results are valid for longer sequences. Our 
approach allows for folding longer sequences (at least up to 
100-mers) (Shakhnovich, 1994a,b). To test the conclusions 
of a,b this work, we studied a nucleation mechanism of folding 
for a 80-mer chain. Using the same procedures as described 
in this work earlier, we found the nucleus for the 80-mer to 
have 22 out of 105 contacts. This included 16 monomers. 
Although we observed a single nucleus for the 80-mer chains, 
we cannot exclude a multiple-nuclei mechanism for longer 
chains. These multiple nuclei could be associated with folding 
domains [observed recently in hen lysozyme (Miranker et al., 
1991)], which may or may not develop into the structural 
domains of native proteins. 

The folding of long chains (36-100 residues) was possible 
only because these sequences were designed to have the native 
state as a pronounced energy minimum, and a special design 
procedure was necessary to generate such sequences (Sha- 
khnovich & Gutin, 1993a,b). Long random sequences were 
not able to fold (Shakhnovich, 1994a). A complementary 
approach to study folding was taken in the recent paper by 
Sali et al. (1  994b), where short random sequences were taken 
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to study the “minimal requirements” for “one-shot” selection 
of folding sequences from the pool of random sequences. 
Analysis of the folding of short quasirandom folding sequences 
also revealed an activation mechanism, but it differs from the 
one found in the present study. The transition state for short 
random sequences turned out to contain 80-95% of native 
contacts (compare with the nucleus that has 8 particular 
contacts out of 40). This difference may be due to a number 
of reasons. First of all, a random interaction energy model 
was studied by Sali et al. (1994b), while here we studied a 
more realistic sequence model. This difference may be 
important since in the former model energies of contacts are 
totally uncorrelated, while in the latter energies of different 
contacts are correlated. Indeed, the identity of a protein is 
characterized in the letter model by N “letters” (primary 
structure), which determines “2 interactions between every 
pair of monomers. This implies that these interaction energies 
cannot be independent. In the random interaction energy 
model, the identity of a protein is defined through setting all 
-iV interactions between any pair of contacts independently. 
Correlations may be important for nucleus formation, which 
is a contiguous subset of native, stable contacts. A second 
reason, which is more likely to explain the difference between 
the results of two models, is that present sequences were 
designed to enable the folding of long chains. It is likely that 
design in the sequence model generated a contiguous subset 
of strong contacts, which turned out to be a nucleus. It was 
pointed out by Sali et al. (1994b) that the model used there 
is likely to describe the folding of prebiological, short, and 
poorly optimized sequences. As longer proteins evolved, their 
folding may have required sequence design that developed a 
more effective nucleation growth mechanism. Indeed, the 
characteristic folding “time” of random 27-mers in Sali et al. 
(1994b) was 20-50 million steps, while in the present study 
36-mers fold in 1-5 million steps and designed 80-100 mers 
fold in 5-10 million M C  steps (Shakhnovich, 1994a,b). 

The results reported in this paper were obtained using Monte 
Carlo simulation in the lattice model. Two questions are in 
order now: how representative is Monte Carlo for the kinetics 
of folding, and what is the relationship between lattice models 
and real proteins? 

A comprehensive study of the role of lattice and move sets 
in the apparent dynamics of a polymer was performed by 
Skolnick and Kolinski (1990a, 1991), who showed that there 
is no significant dependence of observed dynamics on the choice 
of lattice (diamond or 210) or move set. Moreover, Rey and 
Skolnick (1991) compared the simulation results obtained by 
Monte Carlo on the simplest (diamond) lattice and by off- 
lattice Brownian dynamics. Their conclusion is that the main 
dynamic features observed are independent of the simulation 
technique chosen. It was shown also by Skolnick and Kolinski 
(1 990) that the choice of local moves only, being most natural, 
provides the most realistic time scale picture, as judged in 
comparison with the master equation calculation. 

Thus, in our view, the Monte Carlo approach (taking into 
account its computational effectiveness) may be plausible for 
depicting key features of kinetic processes associated with 
protein folding. However, it is unlikely that MC simulations 
can provide a description of all of the microscopic details of 
the process. Rather, general features, which are observed 
over thousands of steps, are of interest. This is the case in our 
study in which we focus on nucleus formation that takes place 
in lo6 steps. 

The most important question concerning the approach taken 
in this study concerns the relationship between lattice model 
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proteins and real proteins. There is one obvious feature of 
real proteins that our model misses. This is the presence of 
side chains with their degrees of freedom and tight packing 
in the native state. Therefore, our model is aimed toward 
describing stages (if any) of the protein folding process that 
do not include the tight packing of side chains. It is widely 
believed now that packing of side chains occurs at the transition 
from molten globule (MG) to native (N) conformation. 
Experimental evidence has been accumulating (Williams et 
al., 1991; Hughson et al., 1990; Peng & Kim, 1994) that the 
molten globule, when at equilibrium, retains a significant part 
of the native-like backbone fold, in accord with theoretical 
predictions (Shakhnovich & Finkelstein, 1982, 1989; Finkel- 
stein & Shakhnovich, 1989). It was suggested (Ptitsyn, 1973, 
1987) that a “native-like” molten globule may be a universal 
intermediate on the protein folding pathway. Subsequent 
experimental findings (Ptitsyn et al., 1990; Matouschek et 
al., 1990,1992; Jennings & Wright, 1993) strongly buttressed 
this point, providing evidence [especially in Jennins and Wright 
(1993)j that the transient long-lived intermediate is structur- 
ally close to the equilibrium “native-like” molten globule. 

The folded state in our model should be related to the “native- 
like” molten globule. It is interesting to note that a chain in 
this state fluctuates around the native fold, but these 
fluctuations are inhomogeneous (nucleus contacts are fluc- 
tuating less than other contacts) (see Figure 8). This is in 
accord with experimental information about the molten globule 
(Hughson et al., 1990; Baum et al., 1989). 

The nucleus transition state that we observe in this work 
is the transition state between a coil, or a structureless compact 
intermediate without unique structure (Elove et al., 1992; 
Radford et al., 1992), and the molten globule with elements 
of native-like fold. By no means should it be confused with 
the transition state between the native state (N) and the molten 
globule (MG), which is usually associated with the transition 
state for folding because the MG-N transition is the rate- 
limiting step for the whole process. This transition N-MG 
state is known, both from theory and experiment (Segawa & 
Sugihara, 1984; Shakhnovich & Finkelstein, 1989; Bycroft, 
1990), to be close to the native state, differing from it by some 
small expansion [so small that protein core is mainly 
inaccessible to the solvent: see Segawa and Sugikhara (1984) 
and Matouschek et al. (1992)l. 

A significant simplification of the model is that it did not 
include explicitly secondary structure segments, which are 
stabilized by H-bonds and are able to move as a whole. This 
question is related to the secondary structure framework and 
related diffusion-collision hypotheses of folding (Kim & 
Baldwin, 1982; Karplus & Weaver, 1976). The physical 
mechanism assumed in these hypotheses is that native-like 
secondary structure is formed at early stages so that subsequent 
folding includes movements of segments as a whole, without 
their restructuring due to long-range interactions. This may 
give a kinetic advantage because the degrees of freedom 
associated with secondary structure become frozen, and the 
remaining search is feasible because it includes far fewer 
conformations. Therefore, in order to facilitate kinetics, 
secondary structure elements, after having been formed at 
the ultrafast stage of folding, should be so stable that their 
characteristic folding-unfolding interconversion time in the 
absence of long-range interactions is longer than the time of 
formation of long-range contacts [in the millisecond time range 
(Radfordet al. 1992; Bycroft et al., 1990; Jennings & Wright, 
1993)l. The only way to increase the interconversion time 
from basic nanoseconds to milliseconds, which is consistent 

with the second law, is to increase the stability of the helix. 
This requires - 10 kcal/m/helix of stabilization, which implies 
that the Boltzmann probability of such a stable isolated helix 
will be very close to 1. Recent studies of isolated fragments 
of myoglobin corresponding to helical segments in its native 
secondary structure did not lend evidence supporting the 
suggestion that isolated helixes are stable in the absence of 
long-rangeinteractions (Walthoet al., 1993; Shinet al., 1993). 
Certainly, some fluctuating elements of native-like and 
nonnative secondary structure may form quickly. However, 
it is unclear (at least to us) how the formation of marginally 
stable fluctuating a-helixes and @-strands, with their degrees 
of freedom in equilibrium with all other degrees of freedom, 
can provide any kinetic advantage leading to the resolution 
of Levinthal’s paradox. 

Of course our calculations cannot rule out the framework- 
type mechanism because movements of helixes or @-strands 
as a whole are not included in the move set. However, what 
they show is that this mechanism, even if valid, is not the only, 
or necessary, way to solve the Levinthal paradox. Our 
calculations give an example that the protein folding problem, 
at a model level, can be solved without a framework-type 
mechanism. 

The sequences we worked with in this model were designed 
to have the native conformation as a pronounced global energy 
minimum. The question is how can this optimization be related 
to real proteins. First of all, we note that a pronounced energy 
gap between the native state and the set of nonnative 
conformations is a necessary thermodynamic condition of the 
uniqueness of the native structure; this is independent of the 
model or the potential function chosen. The native structure 
must be thermodynamically stable at physiological tempera- 
ture. This can be guaranteed only if the gap between the 
native structure and nonnative conformations is sufficiently 
large, i.e., many kT (Shakhnovich & Gutin, 1990). In other 
words, a large energy gap protects a unique structure from 
destruction by thermal fluctuations. However, our results go 
further and suggest that a pronounced energy gap is also a 
sufficient condition for sequences to fold rapidly to the native 
conformation. 

These considerations do not contradict the fact that proteins 
are not highly stable. Experimental results (e.g., Privalov, 
1979) suggest that the temperature of denaturation for most 
proteins is not too high, and therefore the difference in free 
energy between the native conformation and denatured states 
is moderate: 10-12 kcal/mol for a 100-residue protein at 
physiological temperature (Privalov, 1992). In order to give 
a correct interpretation of the thermodynamic data on protein 
stability, one should note that what is known to be small is 
the difference in free energy between the native and denatured 
states; this includes the entropic contribution. Energy dif- 
ferences between the native and denatured states are much 
more pronounced, as measured by the latent heat of dena- 
turational transition and its cooperativity. The entropic factor 
is also essential for lattice proteins, making the unfolding 
temperatures not too high ( ~ 1 . 1  in our energy units) and the 
lattice proteins marginally stable, like real ones. 

CONCLUSION IMPLICATIONS FOR EXPERIMENT 
In this study, we have presented a minimal theoretical model 

of protein folding. The model is free of internal inconsistencies 
and unphysical assumptions. Indeed, the simulations are not 
artificially biased toward the native state: all the chain   know^" 
when the simulation starts from a random coil conformation 
is the amino acid sequence. The Hamiltonian is physical: the 
interaction of, say, glycine with another glycine depends only 
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on the spatial distance between the residues and does not 
depend on their positions in the chain or in the native 
conformation. Model proteins resolve the Levinthal paradox, 
exhibiting fast folding to the unique global minimum con- 
formation without scanning the astronomically large number 
of possible conformations. We presented the possible mecha- 
nism. 

Like any theoretical work, this one deals with a simplified 
representation of proteins, and the adequacy of the model for 
the system it studies is at  issue. The only nontautological way 
to estimate the adequacy of a model is to formulate its 
predictions and compare them with experiment. 

It should be noted here that the model studied in this paper 
represents a generic protein and is aimed toward the study of 
universal features of protein folding unrelated to the specific 
structural features of a protein molecule. 

The theoretical analysis presented in this work has several 
implications directly related to experiment, as follows. 

(1) The cooperative character of the coil-molten globule 
transition in natural (Le., evolutionarily optimized) protein 
sequences contrasted with the non-cooperative character and 
absence of unique structure in the randomized sequence. This 
explains the difference in experimental results for proteins 
[bovine carbonic anhydrase and staphylococcal 8-lactamase 
(Uversky et al., 1992) and staphylococcal nuclease (Gittis et 
al., 1993)], where “all-or-none” transitions were reported, and 
for thequasirandom sequence of the F2 fragment of tryptophan 
synthase (Chafotte et al., 1991), where the transition is non- 
cooperative. 

(2) Theory demonstrated the heterogeneity of the folded 
state (in the context of our model, molten globule), asserting 
that some contacts (in-nucleus) are less subject to fluctuations 
than other contacts (off-nucleus) (see Figure 8 and the 
discussion there). Corresponding, the nucleus contact inter- 
conversion rate is much slower, as is manifested in higher H D  
protection factors. Such heterogeneity in protection factors 
in the molten globule was indeed observed in a number of 
proteins (Hughson et al., 1990; Jeng et al., 1990). The 
explanation is simple: conformations with the nucleus cor- 
respond to the top of the barrier, the transition state. 
Therefore, fluctuations that go up to the barrier are most rare 
as they require higher energy. This makes the nucleus the 
most protected region in a molten globule. 

(3) Our calculations predict a direct correspondence between 
the residues that are most protected from HD exchange in the 
equilibrium molten globule and the ones involved in folding 
the nucleus, i.e., thefirst stable set of contacts to be formed 
in the course of the folding process. This assertion is in accord 
with the experimental results for myoglobin (Jennings & 
Wright, 1993) and cytochrome C (Roder et al., 1988). The 
observation about the implications of mutations in nuclei on 
the folding rate makes this correspondence directly experi- 
mentally verifiable. 

Our design-folding approach provided a possible conceptual 
framework to solve the protein folding problem. Within this 
approach, one can also address questions pertinent to the 
folding pathway of a specific protein, e.g., how to determine 
the folding nucleus in a given protein. To this end, it is 
necessary to take the nativestructureof this protein as a target 
conforamtion, design a sequence to fit the target conformation, 
and fold this sequence. This requires the incorporation of 
side chains into the lattice model, and the recent work by 
Skolnick and Kolinsky (1993) demonstrated the feasibility of 
such an endeavor. We are currently working along these lines. 
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