Modelling binding site with 3DLigandSite

Mark Wass m.n.wass@kent.ac.uk

CASP

Developed as a result of participation in CASP

Homologous structures

Homologous structures 2oai 2pls 2p4p

Homologous structures 2oai 2pls 2p4p Calcium Magnesium

Homologous structures 2oai 2pls 2p4p Calcium Magnesium

Wass & Sternberg Proteins 2009

Homologous structures

Performance at CASP8

Adapted from Lopez et al., 2009

Automating our CASP8 approach

Physical Market Co.
Display Modification
Whole protein
colour by:
spacefill: ⊙ off ○ 20% ○ 100%
wireframe: ⊙ off ⊙ wireframe ⊙ wireframe 50 ⊙ wireframe 100
Predicted residues
spacefill: ● off □ 20% □ 100%
wireframe: ⊙ off ⊙ on ⊙ wireframe 50 ⊙ wireframe 100
✓ cartoon□ label
Heterogens
Display of Metalic heterogens spacefill: ○ off ○ 20% ○ 100%
Display of Non Metalic heterogens spacefill:
wireframe: ○ off ○ standard ○ wireframe 50 • wireframe 100
View
Reset to original orientation
□ spin
background black :
Prediction colour legend: Other residues Predicted Binding Site
Conservation Score Colour legend: 0-0.15 0.16-0.30 0.31-0.40 0.41-0.50 0.51-0.60 0.61-0.70 0.71-0.80 0.81-1.00

Wass et al., NAR 2010

Wass et al., NAR 2010

Predicting contacting residues

Multiple molecules in cluster but where is the actual binding site?

Threshold for prediction = Contact 25% ligands

3DLigandSite Benchmarking

FINDSITE set (617)

Measure	3DLigandSite
MCC	0.68
Recall	70%
Precision	70%

CASP8 targets (28)

Measure	3DLigandSite	Human CASP8
MCC	0.64	0.63
Recall	71%	83%
Precision	60%	56%

MCC – Matthews Correlation Coefficient Recall– percentage of binding sites that are predicted (TP/(TP+FN)) Precision– percentage of predicted residues that are correct (TP/(TP+FP))

Using 3DLigandSite

Wass et al., NAR 2010

Homepage - submission

Homepage - submission

Upload your structure: Choose File No file chosen		Upload structure		
email address: *			optional	
Job description:			optional	
	Reset	3dligandSite search)	

Results page

Submission details

Submission Details

Email: mark@wass.com

Unique Job identifier:

8ce9f8caffc285eb

JOB ID

Description: eg4

Date: Tue Sep 20 11:36:45 BST 2011

Submission

Type:

sequence

Submission type – sequence/structure

GLAACEGEYSQKYSTMSPLGSGAFGFVWTAVDKEKNKEVVVKFIKKEKVLEDCWIEDPKL GKVTLEIAILSRVEHANIIKVLDIFENQGFFQLVMEKHSGLDLFAFIDRHPRLDEPLASY IFRQLVSAVGYLRLKDIIHRDIKDENIVIAEDFTIKLIDFGSAAYLERGKLFYTFCGTIE

Query Seq:

YCAPEVLMGNPYRGPELEMWSLGVTLYTLVFEENPFCELEETVEAAIHPPYLVSKELMSL VSGLLQPVPERRTTLEKLVTDPWVTQPVNLADYTWEEVFRVNKPESGVLSAASLEMGNRS

LSDVAQAQELCGGE

Wass et al., NAR 2010

Wass et al., NAR 2010

Structural model

Structural Model

JOB ID –same as 3DLig job id

Phyre2 job:

3dlsA

8ce9f8caffc285eb

Phyre2 template:

00107

Phyre2 confidence score:

100.0

Model confidence 0 (low) -100 (high)

Structural Search

confidence data from search of structural library with Mammoth

Average InE:

29.965

Maximum LnE:

34.64

Min LnE:

28.45

Min InE value used = 7
Predictions using low LnE
values e.g. < ~12-15 should be
treated with caution

Similarity of structural hits (higher value = structures more similar)

Wass *et al.*, NAR 2010

Ligand Clusters

Ligand Clusters Identified

Note prediction based on first cluster
Click on other clusters to view the potential sites associated with them

			IVIAIVIIVIO I II Scores		
Cluster	Ligands	Structures	Av	min	max
1	33	22	30.0	28.4	34.6
2	2	2	28.5	28.4	28.6
3	2	2	28.5	28.4	28.6
4	1	1	28.7	28.7	28.7

Clusters ranked by number of ligands.

Mammoth scores for cluster displayed to indicate how similar the structures are that contributed the ligands in the cluster.

Top cluster displayed as main prediction. Click on rows to view predictions for the other clusters.

Wass et al., NAR 2010

Interpreting predictions – what ligands?

Heterogens present in Predicted Binding Site			
Heterogen	Count	source structures	
STU	9	1yhs_A,3ckx_A,1u59_A,1qpd_A,1qpj_A, 2dq7_X,3cd3_A,3bkb_A,3cbl_A	
ADP	6	3dls_F,3d5w_A,1ol7_A,1mq4_A,1ol5_A, 2g2i_B	
MG	16	2ou7_A,3dls_F,1xr1_A,3f2a_A,1ol7_A, 2v7a_B,1mq4_A,1ol5_A,3cly_A	
AMP	1	1yxu_C	
ATP	1	1ql6_A	

Lists the ligands that are present in the cluster and the structures that they are from

Predicted residue table

- Residues in cluster that are < 0.5A
 +vdw of 25% of cluster predicted
- Number of ligand contact
- Av distance between residue and these ligands
- JS Divergence conservation score (range 0 – 1).
- These values can be used to refine the prediction – e.g.
 - residues that contact few of the ligands
 - are further from the ligands
 - Have low conservation scores

Take snapshot of current view

Download model and pymol Script

Display Modifica	ition		
Whole protein	n		
colour by: Oprediction OJensen Shannon Divergence			
spacefill: ⊙off			
wireframe: off Owireframe Owireframe 50 Owirefra	ame 100		
☑ cartoon			
Predicted residu	ues		
spacefill: ⊙off			
wireframe: Off Oon Owireframe 50 •wireframe 100	0		
Heterogens			
Display of Metalic heterogens spacefill: ○off ○20% • 100%			
Display of Non Metalic heterogens spacefill: ⊙off ○20% ○100%			
wireframe: ○off ○standard ○wireframe 50 ⊙wirefram	me 100		
View			
Reset to original orientation			
spin			
background black 💠			
Prediction colour legend: Other residues Pre	edicted Binding Site		
Control Cook Control Cook Control		0.31-0.40	
0.51-0.60 0.6	61-0.70	0.71-0.80	J.6T-T.U

Control:

Colouring of protein – by prediction or conservation

Display of protein: Spacefill/wireframe/cartoon

Label predicted residues so they can be identified in the graphical view.

Separate controls for display of predicted residues

Modify display of ligands: Spacefill/wireframe

Overall:

Make protein rotate
Change background colour

Interpreting predictions - Metals

Metals found bound like this – with 3-6 residues Often the residues aren't sequential

Binding sites with a single residue contacting the ligand are likely to be wrong

Interpreting predictions - Metals

Sometimes the cluster of residues might overlap with the protein structure as in the examples above. This is more likely where the cluster is close to a loop. The prediction may be good but it might also be slightly affected by the overlap of the cluster and the structure

Interpreting predictions - Metals

Multiple ligands in cluster
Multiple residues contacting ligand
Looks like it could be a ligand binding site
Divergence colouring help suggest residue that might not be part of the binding site.

Single ligand in cluster
Single residue binds the ligand
Unlikely to be a ligand binding site

Interpreting predictions - Oligomers

Site only binds part of cluster

Prediction viewed with other chain of dimer from one of the templates

When predictions only seem to contact part of the ligand in some example this is because the ligand is bound between chains in an oligomer. Therefore part of the binding site might be missed. Different clusters predicted for the binding site may predict different residues that when combined contain the full binding site

Interpreting predictions – large Clusters

Large cluster of many different ligands.

This is unlikely to be a binding site

Suggestions for interpreting results:

- Consider the similarity between the structure and the hits
- The number of ligands in a cluster may be indicative of how likely it is for the region to be a binding site
- Use of the JS Divergence score may help refine predictions
- Metal binding site predictions can have high levels of false positive.
 - Especially if there are many clusters and the clusters only contain a single metal ion
 - Metal ions a generally contact multiple residues
 - Checking the conservation score may be helpful here to remove false predictions
- Clusters can occasionally become very large with many ligands covering a large are of the protein. Such a large site is likely to be incorrect, although part of it may be ligand binding.

Modelling binding site with 3DLigandSite

Mark Wass m.n.wass@kent.ac.uk