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Abstract

A strategy for protein structure and function based annotation of genomes was developed,

evaluated and applied to the proteins of several genomes including the human genome.

First the performance of the widely-used homology-based sequence comparison pro-

gram PSI-BLAST to detect distant homologous relationships (<20% sequence identity)

was evaluated. The benchmark is based on two sets of sequences from the Structural

Classification Of Proteins (SCOP) database for which the homologous relationships are

known. About 40% of the test proteome can be annotated via remote homologies. Com-

mon sources of errors are identified. PSI-BLAST is applied to assign homologues of known

structure and function to proteins of M. genitalium and M. tuberculosis. From the bench-

mark, the number of missed assignments and the potential extent of new structural and

functional families was estimated.

An automated proteome annotation system was developed to perform large scale an-

notations based on analyses such as PSI-BLAST. Computationally intensive analyses can

be distributed across several computers. The system is based on a relational database

serving as a back-end and a software interface as a front-end. Relational storage of results

from different analyses permits straightforward evaluation of results and the comparison

of annotations across genomes.

The above annotation system was applied to fourteen proteomes including the human

proteome. The extent and reliability of structural and functional annotation in these

proteomes was evaluated and compared. About 40% of the human proteome can be

assigned to protein folds. For 77% of the proteome there is some functional information,

but only 26% of the proteome can be assigned to the standard sequence motifs that

characterise function. There are substantial differences in the composition of membrane

proteins between the proteomes in terms of their globular domains. Commonly occurring

structural superfamilies are identified and compared across the proteomes. The frequencies

of these superfamilies leads to the estimate that 98% of the human proteome evolved by

domain duplication, with four of the ten most duplicated superfamilies potentially specific

for multi-cellular organisms. Occurrence of domains in repeats is more common in metazoa

than in single-cellular organisms. Superfamily pairs co-occurring in the same protein

sequence were analysed and compared across the proteomes. Structural superfamilies

over- and under-represented in human disease genes were identified.
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Chapter 1

Introduction

The available sequence data from the finished genome projects provides biological

science with a huge and valuable source of data. The genetic information together

with its derived data such as protein sequences and structures, expression levels

and sub-cellular location has to be managed, understood and exploited for human

benefit. It is a long and challenging way from the raw sequence data (the genome)

to only a basic understanding of how an organism developed in evolution and how it

functions. It is not just the sum of the parts that makes life but a complex regulatory

network of interactions involving many components. The sequence data is further

analysed in large scale experiments such as expression profiles and protein interac-

tion networks which in turn increases the amount data to be analysed dramatically.

Bioinformatics organises and integrates all parts of the experimentally generated

data as well as connecting them to gain understanding of biological systems.

Bioinformatics is a relatively young discipline as a science with components from

software engineering. Bioinformatics aims to analyse and understand biological data,

but a hypothesis is not necessarily required when it comes to the description, man-

agement and interpretation of the experimentally generated data. Currently, the

development of new algorithms, recycling of algorithms from other areas such as

natural language processing, data management, the interpretation of data and their

relationships as well as supporting biologists working in a specific system is included

in bioinformatics.

This work contains a software engineering component, the development of an

automated annotation system that integrates existing data and methods to perform
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a scientific analysis of the integrated data. The results are of interest from the sci-

entific point of view (bringing insight into commonalities and differences between

genomes) and from the software engineering point of view (the annotation system

may be used to support biologists and could be a platform for further developments).

1.1 Genome sequencing projects

As of November 2001 there were 67 completely sequenced bacterial and archaea bac-

terial genomes and eleven eukaryotic genomes (for which at least one chromosome

has been sequenced) available. The draft human genome sequence with >3,000

mega bases was published in February 2001. Table 1.1 gives an overview of the

finished sequencing projects. In addition there are roughly 300 ongoing prokary-

otic and about 80 eukaryotic public and commercial sequencing projects (data from

Integrated Genomics Inc., http://wit.integratedgenomics.com/GOLD, Bernal et al.

(2001)). Many of the sequenced genomes are from pathogenic organisms such as

the recently published Yersinia pestis genome that causes plague (Heidelberg et al.,

2000) or the two Salmonella strains (Parkhill et al., 2001a; McClelland et al., 2001).

The genome sequence reveals many secrets about the organism that may help to

identify potential drug targets. The ideal target might be a key protein in an essen-

tial pathway specific to the pathogenic organism.

species (+strain) size genes

Archaea

Methanococcus jannaschii DSM 2661 (Bult et al., 1996) 1664 Kb 1750

Methanobacterium thermoautotrophicum delta H (Smith et al., 1997) 1751 Kb 1918

Archaeoglobus fulgidus DSM4304 (Klenk et al., 1997) 2178 Kb 2493

Pyrococcus horikoshii (shinkaj) OT3 (Kawarabayasi et al., 1998) 1738 Kb 1979

Aeropyrum pernix K1 (Kawarabayasi et al., 1999) 1669 Kb 2620

Pyrococcus abyssi GE5 (no reference) 1765 Kb 1765

Halobacterium sp. NRC-1 (Ng et al., 2000) 2014 Kb 2058

Thermoplasma acidophilum (Ruepp et al., 2000) 1564 Kb 1478

Thermoplasma volcanium GSS1 (Kawashima et al., 2000) 1584 Kb 1524

Sulfolobus solfataricus P2 (She et al., 2001) 2992 Kb 2977

Sulfolobus tokodaii 7 (Kawarabayasi et al., 2001) 2694 Kb 2826

Bacteria

Haemophilus influenzae KW20 (Fleischmann et al., 1995) 1830 Kb 1850

Mycoplasma genitalium G-37 (Fraser et al., 1995) 580 Kb 468

Synechocystis sp. PCC6803 (Kaneko et al., 1996) 3573 Kb 3168

Mycoplasma pneumoniae M129 (Himmelreich et al., 1996) 816 Kb 677

Escherichia coli K12- MG1655 (Blattner et al., 1997) 4639 Kb 4289

continued on next page

http://wit.integratedgenomics.com/GOLD
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continued from previous page

species (+strain) size genes

Helicobacter pylori 26695 (Tomb et al., 1997) 1667 Kb 1590

Bacillus subtilis 168 (Kunst et al., 1997) 4214 Kb 4099

Borrelia burgdorferi B31 (Fraser et al., 1997) 1230 Kb 1256

Aquifex aeolicus VF5 (Deckert et al., 1998) 1551 Kb 1544

Mycobacterium tuberculosis H37Rv (lab strain) (Cole et al., 1998) 4411 Kb 4402

Treponema pallidum subsp. pallidum Nichols (Fraser et al., 1998) 1138 Kb 1041

Chlamydia trachomatis serovar D (Stephens et al., 1998) 1042 Kb 896

Rickettsia prowazekii Madrid E (Andersson et al., 1998) 1111 Kb 834

Helicobacter pylori J99 (Alm et al., 1999) 1643 Kb 1495

Chlamydia pneumoniae CWL029 (Kalman et al., 1999) 1230 Kb 1052

Thermotoga maritima MSB8 (Nelson et al., 1999) 1860 Kb 1877

Deinococcus radiodurans R1 (White et al., 1999) 3284 Kb 3187

Ureaplasma urealyticum serovar 3 (Glass et al., 2000) 751 Kb 650

Campylobacter jejuni NCTC 11168 (Parkhill et al., 2000b) 1641 Kb 1654

Chlamydia pneumoniae AR39 (Read et al., 2000) 1229 Kb 1052

Chlamydia trachomatis MoPn Nigg (Read et al., 2000) 1069 Kb 924

Neisseria meningitidis MC58 (serogroup B) (Tettelin et al., 2000) 2272 Kb 2158

Neisseria meningitidis Z2491 (serogroup A) (Parkhill et al., 2000a) 2184 Kb 2121

Bacillus halodurans C-125 (Takami & Horikoshi, 2000) 4202 Kb 4066

Chlamydia pneumoniae J138 (Shirai et al., 2000) 1228 Kb 1070

Xylella fastidiosa CVC 8.1.b clone 9.a.5.c (Simpson et al., 2000) 2679 Kb 2904

Vibrio cholerae serotype O1, Biotype El Tor, strain N16961 (Heidelberg et al., 2000) 4000 Kb 3885

Pseudomonas aeruginosa PAO1 (Stover et al., 2000) 6264 Kb 5570

Buchnera sp. APS (Shigenobu et al., 2000) 640 Kb 564

Mesorhizobium loti MAFF303099 (Kaneko et al., 2000) 7596 Kb 6752

Escherichia coli O157:H7 EDL933 (Perna et al., 2001) 4100 Kb 5283

Mycobacterium leprae TN (Cole et al., 2001) 3268 Kb 1604

Escherichia coli O157:H7. Sakai (Hayashi et al., 2001) 5594 Kb 5448

Pasteurella multocida Pm70 (May et al., 2001) 2250 Kb 2014

Caulobacter crescentus (Nierman et al., 2001) 4016 Kb 3737

Streptococcus pyogenes SF370 (M1) (Ferretti et al., 2001) 1852 Kb 1696

Lactococcus lactis IL1403 (Bolotin et al., 2001) 2365 Kb 2266

Staphylococcus aureus N315 (Kuroda et al., 2001) 2813 Kb 2594

Staphylococcus aureus Mu50 (Kuroda et al., 2001) 2878 Kb 2697

Mycobacterium tuberculosis CDC 1551 (no reference) 4403 Kb 4187

Mycoplasma pulmonis (Chambaud et al., 2001) 963 Kb 782

Streptococcus pneumoniae TIGR4 (Tettelin et al., 2001) 2160 Kb 2094

Clostridium acetobutylicum ATCC 824D (Nolling et al., 2001) 4100 Kb 4927

Sinorhizobium meliloti 1021 (Galibert et al., 2001) 6690 Kb 6205

Streptococcus pneumoniae R6 (Hoskins et al., 2001) 2038 Kb 2043

Agrobacterium tumefaciens C58 (Wood et al., 2001) 4915 Kb 4554

Rickettsia conorii Malish 7 (Ogata et al., 2001) 1268 Kb 1374

Yersinia pestis CO-92 Biovar Orientalis (Parkhill et al., 2001b) 4653 Kb 4012

Salmonella typhi CT18 (Kuroda et al., 2001) 4809 Kb 4600

Salmonella typhimurium,LT2 SGSC1412 (McClelland et al., 2001) 4857 Kb 4597

Listeria innocua Clip11262, rhamnose-negative (Glaser et al., 2001) 3011 Kb 2981

Listeria monocytogenes EGD-e (Glaser et al., 2001) 2944 Kb 2855

Eukaryota

Saccharomyces cerevisiae S288C (No authors listed, 1997) 12069 Kb 6294

Caenorhabditis elegans (The C. elegans Sequencing Consortium, 1998) 97000 Kb 19099

Drosophila melanogaster (Adams et al., 2000) 137000 Kb 14100

Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000) 115428 Kb 25498

continued on next page
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continued from previous page

species (+strain) size genes

Guillardia theta (Douglas et al., 2001) 551 Kb 464

Leishmania major Friedlin Chromosome 1 (Myler et al., 1999) 257 Kb 79

Plasmodium falciparum 3D7 Chromosome 2 (Gardner et al., 1998) 947 Kb 205

Plasmodium falciparum 3D7 Chromosome 3 (Bowman et al., 1999) 1060 Kb 220

Homo sapiens (Lander et al. (2001) and Venter et al. (2001)) >3000 Mb 35000

Table 1.1: Finished genome projects (status in November 2001). The size of the genome is given
in thousand base pairs (Kb) or million base pairs (Mb), genes is the number of identified genes. The
data of this table is taken from the GOLD database at http://wit.integratedgenomics.com/GOLD
(Bernal et al., 2001).

1.2 Introduction into genome annotation

A standard component of any genome project is an overall annotation. Having the

genome sequence alone does not substantially help to understand the biology of the

organism. In the following sections the major steps in genome annotation are rep-

resented. Protein sequences are the starting point for any annotation in this work,

and therefore the following sections focus on protein sequences.

1.2.1 Finding genes in genomes

The first important step in annotating the genome is to identify the genes within

the genomic sequence. It is worth mentioning the basic methods used in identifying

genes as well as associated problems and errors, because these can have an effect of

‘downstream’ analyses (e.g. analyses based on genes and proteins). An introduction

into gene finding is given in a review by Stein (2001).

In bacteria, genes may be identified by just looking for the longest open reading

frame (ORF) defined by a start and a stop codon. The Shine-Dalgarno sequence,

which is a polypurine (adenine and guanine) sequence shorter then ten nucleotides

at the 3’ end of the gene (about 7 nucleotides 5’ of the start codon), helps to

identify the location of a gene within the genome. In addition to start and stop

codon location, codon usage can be used in gene finding. Similar sequences with a

common evolutionary origin (homologues) from already annotated genomes are con-

sidered to confirm the location of genes in a newly sequenced genome. The genomic

DNA sequence is translated in all three reading frames on both nucleotide strands
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(in direction of translation, from 3’ to 5’) to produce long theoretical peptide se-

quences which are compared to known proteins from other organisms. Nevertheless,

Skovgaard et al. (2001) showed that the number of genes in bacteria is generally

overpredicted (in A. pernix they estimated 100% gene overprediction which is by far

the most extreme in their analysis).

Gene identification in eukaryotic genomes is far more problematic than in prokary-

otic genomes. This is due to the exon-intron structure of genes and the lack of

obvious sequence features such as a Shine-Dalgarno sequence to distinguish between

coding and non-coding regions . Despite the start codon there is no clear landmark

where a gene starts on a eukaryotic chromosome. Rule based ab initio gene iden-

tification methods such as GeneScan (Burge & Karlin, 1997) or Grail (Uberbacher

& Mural, 1991; Roberts, 1991; Xu et al., 1994) that employ statistical methods (for

example hidden Markov models, see section 1.3.7), have been shown to identify only

40% of the existing genes with their exon-intron structure. About 70% of these

predictions are to some extent wrong, i.e. do not corresponds to the correct gene

structure (Reese et al., 2000). On the other hand 90% of the predictions include at

least a fraction of the real gene. The use of experimental data as described above

for bacterial gene identification improves eukaryotic gene finding. For example, the

human genome sequence as defined by the ENSEMBL project version 1.2 (Hubbard

et al. (2002), http://www.ensembl.org), contains more than 150,000 predicted genes,

but only about 25,000 genes are either confirmed by expressed sequenced tags (ESTs

derived from mRNA of expressed genes) or homologues in a different organism. Be-

cause of the extensive exon-intron structure and the small fraction of actual coding

sequences in the human genome (estimated at about 1.5% of the genome, Lander

et al. (2001)), two predicted genes may in fact be one larger gene, or a larger gene

may be in fact several genes. A positive view on the human genome shows that

25,000 of at least 30,000 genes have been identified with the help of experimental

data (ESTs and homologues), which corresponds to nearly 85% of the estimated

number of genes in the genome.

The expected number of genes in the human genome is between 30,000 and

40,000 (Lander et al., 2001), thus there are theoretically still 5,000 to 15,000 genes

missing. The genome sequences of other higher eukaryotes, in particular those of

mouse (M. musculus), rat (R. norvegicus) and the puffer fish (Fugu rubripes) will

help to identify genes within these genomes and that of human, because of the higher

http://www.ensembl.org
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sequence conservation within exons compared to non coding regions. The mouse and

rat genome projects were established mainly because these organisms are used as

models in biology. The genome sequence (with the confirmed set of genes) will

accelerate the progress with which molecular biologists clone and analyse specific

parts of the genome. The puffer fish project was deliberately established to enhance

gene finding and interpretation of the human genome sequence. A draft sequence

of the puffer fish project has been available since October 2001. The extent of the

coding sequences is estimated to be similar to that of human, but the overall size of

the genome (350 to 400 mega bases) is just about one eighth of the human genome

(>3,000 mega bases). The sequence conservation between the dense coding regions

of the puffer fish and the corresponding regions in the human genome is expected

to reveal currently unidentified genes.

In interpreting results from the analysis of the identified peptide sequence reper-

toire of a genome one has to keep in mind that the absence of a particular protein

does not necessarily mean that the genome contains no coding sequence for this

peptide, it may just have been missed in the interpretation of the genome.

1.2.2 Functional classification of genes and proteins

Once the genes are identified within a genome, they have to be functionally charac-

terised. Usually the genes are compared to a set of already functionally characterised

genes. Since a protein sequence is more conserved in its amino acid sequence than

the corresponding nucleotide sequence of the gene (because of the redundant genetic

code), sequence comparisons for functional annotation are performed at the peptide

level.

Function, at the level of a functional classification of proteins, is the description

of the biochemical function or a combination of several biochemical functions. A

functional annotation is generally derived from one or more homologous sequences

for which a functional description has been generated previously. However, only for

a fraction of annotated proteins has the biochemical activity been proven experi-

mentally (Ursing et al., 2002). Section 1.4.1 discusses the quality and the limitations

of functional transfer between homologues.



Introduction 16

The majority of proteins in a genome consist of more than one protein domain.

A domain can be considered as the smallest functional and evolutionary unit of pro-

teins and is generally found in different proteins in combination with other domains

of the same (repeats) or of different type (Apic et al., 2001; Qian et al., 2001a). The

potential multi-domain character of proteins may need a list of biochemical func-

tions, which depends on the level detail of the annotation. For example a protein

with a NAD(P) binding domain and a dehydrogenase domain may just be described

as a dehydrogenase or in more detail as a protein that binds NAD(P) and has a

dehydrogenase activity (the NAD(P) binding domain may be a ‘helper’ domain to

fulfil the proteins biochemical function). In most cases the functional annotation

does not include the biological function, e.g. a human protease may be found in

a different biological context such as digestion, during development or in wound

healing. The main concepts in functional protein annotation are:

• Finding a homologous sequence that has been functionally characterised pre-

viously, the main databases containing such protein sequences are SwissProt

and PIR.

• Identifying domains within a protein sequence via homology. The main do-

main databases with functional descriptions are PFAM, SMART, ProDom and

InterPro. (Structural domain databases are discussed later.)

• Finding conserved patterns or motifs (these motifs are generally shorter than a

domain and may not include an independent folding unit). The main databases

maintaining collections of patterns or motifs associated with a function are

Prosite, Prints and Blocks.

1.2.3 Major resources used in protein annotation

The following sections give a more detailed view of the contents of some of the

available databases, including an overview of how these databases are constructed.

The first issue each year of the journal Nucleic Acids Research (in particular those

from 1999 on) contains articles about biological databases. The first 2002 issue

describes 112 different specialised biological databases.

The main source database GenBank and EMBL

All the specialised databases described below are based on the basic sequence databa-

ses. The major nucleotide sequence databases are GenBank (Benson et al., 2002) and
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EMBL (Stoesser et al., 2002). Usually nucleotide sequences (or a nucleotide sequence

together with its peptide sequence) are submitted to either of these databases. Also,

GenBank and EMBL update each other, so that both databases, with some de-

lay, contain the same sequences. If possible the submitted nucleotide sequences are

translated into a theoretical peptide sequence. These peptide sequences generate the

TrEMBL database (translated EMBL) and the GenPept database (translations from

GenBank). In addition, all publicly available genome sequences are submitted to

one of these databases. GenBank and EMBL entries contain information associated

with the sequence: literature references, authors, gene or protein names, taxonomic

information of the source organism and a feature table that lists all known features

(e.g. a ribosomal binding site for a bacterial ORF or an exon for a eukaryotic se-

quence) with their location in the sequence. GenPept and TrEMBL contain more

than 800,000 non-redundant peptide sequences (status 11/2001). EMBL/TrEMBL

is available from the EBI (http://www.ebi.ac.uk) and GenBank/GenPept is avail-

able from the NCBI (http://www.ncbi.nlm.nih.gov).

The SwissProt protein database

The SwissProt database (Bairoch & Apweiler, 2000) historically collected sequences

from protein sequencing experiments, i.e. the sequence information was directly

taken from the peptide sequence and not by translating a coding region of a gene.

SwissProt (version 40.11) contains 105,322 protein sequences. TrEMBL sequences

are transfered to SwissProt if there is sufficient evidence for the existence of the

gene product. The procedure for integrating new entries into SwissProt includes re-

viewing by human experts (database curators) and external consultants with expert

knowledge about a particular protein family. A SwissProt entry contains, in addi-

tion to the peptide sequence and literature references, comments about the functions

associated with the protein (edited by the human experts), keywords that describe

the function and a structured feature table that describes regions or positions in the

sequence such as post-translational modifications, domains and sites (e.g. an ATP

binding site).

The PIR protein database

The Protein Information Resource (PIR, Barker et al. (2000)), contains about

200,000 protein sequences (status in 2001). Like SwissProt, the database aims to

http://www.ebi.ac.uk
http://www.ncbi.nlm.nih.gov
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provide high quality annotation. Automatically generated annotations are reviewed

and edited by PIR staff, and consultant scientists who review specific parts of the

database. Sequence entries are classified according to their status to which there is

evidence of their existence, e.g. for entries that are classified as experimental there is

some experimental evidence, and predicted proteins from theoretical coding regions

are classified as predicted. Also the annotation is classified into validated or similarity

according to the available evidence. PIR further clusters sequences in families and

superfamilies based on sequence similarity. Because PIR and SwissProt both get

their sequences from translated coding regions of the major nucleotide databases,

there is redundancy between the two databases.

The PFAM, SMART and ProDdom domain and family databases

The domain and protein family databases described here are generated by splitting

protein sequences into domains and then clustering similar domains into a family.

Annotating proteins according to their domain composition generally leads to more

detail than annotating the protein as a single unit.

PFAM is a database of protein domain families (Bateman et al., 2002), based on

protein sequences from SwissProt and TrEMBL. It contains a set of curated mul-

tiple sequence alignments, each representing a protein family. From these multiple

alignments hidden Markov models (see section 1.3.7) are built, which are in turn

used to search the protein sequence databases to find new members and to expand a

family. The final database PFAM-A provides a high quality description of the fam-

ilies which can help in annotating newly sequenced genomes. Most of the PFAM-A

families also contain a functional text description, cellular location of the members

of the family, relevant literature references and links to taxonomic groups in which

a family is found. PFAM-A is manually curated. Another part of PFAM (PFAM-

B) contains potential domain families for which there is not enough evidence to be

placed into PFAM-A. PFAM-B entries are mainly taken from families of the large

ProDom database (see below). PFAM-B contains more members and families than

PFAM-A but is of lower quality. PFAM-B and ProDom are used to update and

curate PFAM-A. PFAM-A version 6.6 (August 2001) contains 3071 families. PFAM

is available at The Sanger Centre (http://www.sanger.ac.uk/Software/Pfam).

SMART (a Simple Modular Architecture Research Tool, Letunic et al. (2002)),

http://www.sanger.ac.uk/Software/Pfam
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like PFAM, is a domain database but originally focused on domains in eukaryotic

signal transduction. Recent SMART versions (November 2001) also include a wide

range of other domain types (more than 600 domain families). Domain families are

constructed in a similar way to PFAM, but the initial step to create a seed multiple

sequence alignment involve manual editing and, if available, consideration of pro-

tein structure, or homologues of proteins of known structure. Hidden Markov models

are constructed from these alignments that are used to search the protein sequence

database to collect new family members. The hidden Markov models are then re-

built, and the search starts again until no more members are found. In addition each

member of a family is compared to the sequence database using the homology search

method PSI-BLAST (see section 1.3.5) to collect new family members. Alignments

are updated, e.g. when the three dimensional structure of a member is published,

to re-assess domain boundaries of the family. SMART is based on sequences from

SwisProt and TrEMBL. The database is available at the EMBL (http://smart.embl-

-heidelberg.de). The web-interface also allows the user to search for proteins of a

given domain architecture (domain combinations).

ProDom (Corpet et al., 2000) is a domain database with a larger sequence cover-

age than PFAM or SMART. Over 75% of the proteins from SwissProt and TrEMBL

can be assigned to ProDom families (status 2001). There are about 44,000 ProDom

domain families with more than one member. From version 35 onwards, the ProDom

database includes manual inspection of protein families by scientific consultants.

PFAM-A (see above) is used to increase the quality of ProDom. Domain families

are generated via PSI-BLAST homology searches (Sonnhammer & Kahn, 1994).

Two proteins may share only one homologous region in their sequence, which can

be a single domain or several domains. These regions are then used as queries in

subsequent PSI-BLAST searches to find additional significant alignments. This pro-

cedure is repeated until the regions cannot be split or truncated anymore because

no further homologous regions are found. The identified regions are then consid-

ered to be domains, and all homologous regions belong to one family. As a quality

control, recent versions of ProDom assign consistency indicators to each family (for

example sequence variation within a family). ProDom-GC is a ProDom version that

clusters protein sequences from complete genomes into families. Both databases are

available at http://prodes.toulouse.inra.fr/prodom/doc/prodom.html.

http://smart.embl-heidelberg.de
http://smart.embl-heidelberg.de
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html
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Motif databases: PROSITE, PRINTS and BLOCKS

The PROSITE database (Falquet et al., 2002) is a collection of pattern descriptions

that usually are associated with a biochemical function. These signatures are gen-

erated from curated multiple sequence alignments and generally describe conserved

positions within a domain family. Signatures are represented as regular expression

patterns. Since patterns are not flexible (i.e. a pattern matches a sequence region

or it does not), the extent to which patterns identify a particular motif is limited.

To overcome this limitation, signature profiles have been developed which assign a

score to each of the 20 amino acids at each position of the signature according to

the frequency of which each amino acid is found at a particular position. Further,

alternative protein structure-based profiles and methods involving hidden Markov

models have been employed. A PROSITE entry can be associated with a functional

description and reasons that lead the construction of a pattern or profile. PROSITE

version 16.50 (November 2001) contains 1103 documents describing 1493 patterns

and profiles, and is available at http://www.expasy.org/prosite.html, it is updated

in parallel with SwissProt.

PRINTS (Attwood et al., 2002) and PRINTS-S (a recent development of the

original PRINTS) is a collection of protein fingerprints. The concept behind finger-

prints is that a protein can be represented by several conserved motifs. A fingerprint

is an ordered list of these motifs that describes a protein family. PRINTS-S is a

database for protein sequences rather than domains, although its components (the

single motifs) may be characteristic for a particular type of domain. The procedure

to build the fingerprints starts with manual curated multiple sequence alignments,

and then a series of conserved regions are extracted to construct motifs. This pro-

cedure includes manual intervention. The sequence database is searched iteratively

with these motifs to expand and gain confidence of the motifs. PRINTS-S contains

its own search software FingerPRINScan. The database is built from SwissProt

and TrEMBL. Each entry is associated with bibliographic information, functional

descriptions, lists of matching sequences and comments. The database (PRINTS-

S version 10, based on PRINTS version 32, November 2001) contains about 9,800

individual motifs and about 1,600 fingerprints. It is available at http://www.bioinf.-

man.ac.uk/dbbrowser/PRINTS.

The BLOCKS database (Henikoff et al., 1999, 2000) is similar to PRINTS. It

http://www.expasy.org/prosite.html
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS
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contains a list of motifs that are representative for a family. Motifs in the BLOCKS

database are called blocks. To generate these blocks, protein family databases such

as PFAM-A, PRINTS, ProDom and Domo (Gracy & Argos, 1998) are used. Se-

quences for each family of these databases are re-aligned via a non-gapped multiple

local alignment procedure and converted into non-overlapping blocks. Thus, the

BLOCKS database identifies local motifs within given protein families but does not

find new protein families (because it uses domain families of the existing domains

databases as input). The BLOCKS database can be searched with sequences via the

BLIMPS (Henikoff et al., 1995) program that identifies individual blocks and then

combines hits belonging to the same family. Sequences can also be searched against

the database via the IMPALA program (see section 1.3.6). BLOCKS (June 1999)

contains about 9,500 individual blocks and more than 2,000 families. It is available

at http://www.blocks.fhcrc.org.

InterPro: A combination of databases

InterPro (Apweiler et al., 2001), a recent database development from the EBI

(http://www.ebi.ac.uk/interpro), integrates most of the above databases. InterPro

itself does not contribute any new information, and its power comes from having

all the above databases in one place providing a range of evidence for a protein to

belong to a certain InterPro entry. InterPro is divided into families (3,532 entries),

domains (1,068 entries), repeats (74 entries) and post-translational modifications

(15 entries). A short description and an abstract about the biochemical function,

the biological role and matches against the SwissProt and TrEMBL databases are

included for each entry. InterPro also contains, like recent PFAM versions, families

for which the function is unknown, but where there is evidence for the conservation

of this family, domain or motif.

A family can be described by a set of characteristics from the above databases,

e.g. the thiolase family (InterPro entry IPR002155) is described by two PFAM en-

tries and three Prosite patterns. Sequences can be searched against InterPro via the

InterProScan software package (Zdobnov & Apweiler, 2001).

InterPro is a ‘modern’ database. It is distributed in XML format and is, together

with the integrated search engine InterProScan, a step towards solving common

bioinformatics problems such as standardisation, automatisation and distribution.

http://www.blocks.fhcrc.org
http://www.ebi.ac.uk/interpro
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A list of InterPro families is now commonly reported as an initial analysis of a newly

sequenced genome (e.g. Lander et al. (2001); Rubin et al. (2000) and http://www.-

ebi.ac.uk/proteome).

1.2.4 Gene Ontology (GO), a controlled vocabulary for ge-

nome annotation

A recent commentary published in the journal Nature (Pearson, 2001) summarises

problems and inconsistencies in gene (and protein) nomenclature and stresses the

importance of an ontology for gene names and functions to overcome problems in

annotation. In GO, descriptive terms and phrases are used to annotate a gene rather

than using gene and protein names such PMS1 or TFIIA. These terms are organised

in a hierarchy (a tree of terms and phrases) with the more general terms such as

transcription or fatty acid metabolism as the root for more detailed terms or phrases

such as RNA polymerase II transcription factor or fatty acid hydrolase. The set

of terms and phrases is stored in a central GO database maintained at Stanford

University. However, different GOs may be constructed for special purposes. New

terms can be inserted into the GO-tree. GO is also able to cope with synonyms

and can describe biological function. Using a system with a controlled vocabulary

organised in a tree as in GO allows automatic comparison of annotations between

genomes at different levels of the tree (i.e. at different level of detail, for example

to test for the existence of enzymatic pathways between genomes). The central GO

resource is located at http://www.geneontology.org, see also Lewis et al. (2000);

Ashburner et al. (2000); The Gene Ontology Consortium (2001).

1.2.5 Putting everything together to find pathways

At a higher level, genome annotation aims to identify complete biological subsys-

tems such as metabolic pathways or signalling pathways. The usual approach is

to compare all members of a pathway (e.g. for glycolysis) in a model organism to

the proteins of a newly sequenced genome. The comparison is carried out via the

standard homology search methods (see section 1.3 below). This approach gener-

ally identifies the fundamental pathways such as glycolysis in a newly sequenced

genome. If members of a pathway cannot be identified, this does not necessarily

mean the pathway is incomplete. The homology based comparison may just have

missed some members of that pathway because of insufficient similarity (although

http://www.ebi.ac.uk/proteome
http://www.ebi.ac.uk/proteome
http://www.geneontology.org
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the homologues are present), or there may be alternative routes bypassing the known

proteins of that pathway. There are three major database systems available that

implement the above approach for metabolic pathways: The partly freely available

WIT system from Integrated Genomics (this system is now known as ERGO and is

no longer freely available for academic use, http://www.integratedgenomics.com/),

the KEGG (Kanehisa et al., 2002) database (Kyoto Encyclopedia of Genes and

Genomes) freely available for academic use and EcoCyc (Karp et al., 2002), a sys-

tem that describes metabolic pathways in E. coli (this database recently has been

made freely available for academic users).

The publication of the genome sequence of the cholera bacterium V. cholerae

(Heidelberg et al., 2000) contains an overview of some of the identified pathways in

this bacterium and can serve as an example of how to represent complex pathways

information in a comprehensive way (see figure 1.1).

1.3 Homology based sequence comparison meth-

ods

If two genes or proteins have diverged from a common ancestor they are by definition

homologues. Further, homologues within the same species are paralogues, and often

have different functions due to specialisation. The closest homologues with generally

the same biochemical function in two species are orthologues (Tatusov et al., 1997,

2001). Whether two sequences are homologues can be measured by their sequence

similarity for which there are different definitions and methods.

As mentioned in the introductory sections above, identifying homologous se-

quences is often the first step in annotating a newly sequenced gene. The homo-

logue may already have some functional annotation that may then be transfered to

the newly sequenced gene (or protein). Section 1.4.1 explains the conditions under

which this transfer is considered to be reliable. The sections below explain the most

common sequence search methods and their definition of similarity.

http://www.integratedgenomics.com/
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Origin and function of the small chromosome of V. cholerae
Several lines of evidence suggest that chromosome 2 was originally a
megaplasmid captured by an ancestral Vibrio species. The phyloge-
netic analysis of the ParA homologues located near the putative
origin of replication of each chromosome shows chromosome 1
ParA tending to group with other chromosomal ParAs, and the
ParA from chromosome 2 tending to group with plasmid, phage
and megaplasmid ParAs (see Supplementary Information). In
general, genes on chromosome 2, with an apparently identical
functioning copy on chromosome 1, appear less similar to ortho-
logues present in other g-Proteobacteria species (see Supplemen-
tary Information). Also, chromosome 1 contains all the ribosomal
RNA operons and at least one copy of all the transfer RNAs (four
tRNAs are found on chromosome 2, but there are duplicates on
chromosome 1). In addition, chromosome 2 carries the integron
region, an element often found on plasmids26. Finally, the bias in the
functional gene content is more easily explained, if chromosome 2

was originally a megaplasmid (Fig. 4). The megaplasmid presum-
ably acquired genes from diverse bacterial species before its capture
by the ancestralVibrio. The relocation of several essential genes from
chromosome 1 to the megaplasmid completed the stable capture of
this smaller replicon. Apparently this capture of the megaplasmid
occurred long enough ago that the trinucleotide composition and
percentage G+C content between the two chromosomes has
become similar (except for laterally moving elements such as the
integron island, bacteriophage genomes, transposons, and so on).
The two chromosome structure is found in other Vibrio species19

suggesting that the gene content of the megaplasmid continues to
provide Vibrio with an evolutionary advantage, perhaps within the
aquatic ecosystem where Vibrio species are frequently the dominant
microorganisms14,16.
It is unclear why chromosome 2 has not been integrated into

chromosome 1. Perhaps chromosome 2 plays an important special-
ized function that provides the evolutionary selective pressure to
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Figure 3 Overview of metabolism and transport in V. cholerae. Pathways for energy

production and the metabolism of organic compounds, acids and aldehydes are shown.

Transporters are grouped by substrate speci®city: cations (green), anions (red),

carbohydrates (yellow), nucleosides, purines and pyrimidines (purple), amino acids/

peptides/amines (dark blue) and other (light blue). Question marks associated with

transporters indicate a putative gene, uncertainty in substrate speci®city, or direction of

transport. Permeases are represented as ovals; ABC transporters are shown as composite

®gures of ovals, diamonds and circles; porins are represented as three ovals; the large-

conductance mechanosensitive channel is shown as a gated cylinder; other cylinders

represent outer membrane transporters or receptors; and all other transporters are drawn

as rectangles. Export or import of solutes is designated by the direction of the arrow

through the transporter. If a precise substrate could not be determined for a transporter,

no gene name was assigned and a more general common name re¯ecting the type of

substrate being transported was used. Gene location on the two chromosomes, for both

transporters and metabolic steps, is indicated by arrow colour: all genes located on the

large chromosome (black); all genes located on the small chromosome (blue); all genes

needed for the complete pathway on one chromosome, but a duplicate copy of one or

more genes on the other chromosome (purple); required genes on both chromosomes

(red); complete pathway on both chromosomes (green). (Complete pathways, except for

glycerol, are found on the large chromosome.) Gene numbers on the two chromosomes

are in parentheses and follow the colour scheme for gene location. Substrates underlined

and capitalized can be used as energy sources. PRPP, phosphoribosyl-pyrophosphate;

PEP, phosphoenolpyruvate; PTS, phosphoenolpyruvate-dependant phosphotransferase

system; ATP, adenosine triphosphate; ADP, adenosine diphosphate; MCP, methyl-

accepting chaemotaxis protein; NAG, N-acetylglucosamine; G3P, glycerol-3-phosphate;

glyc, glycerol; NMN, nicotinamide mononucleotide. Asterisk, because V. cholerae does

not use cellobiose, we expect this PTS system to be involved in chitobiose transport.

© 2000 Macmillan Magazines Ltd

Figure 1.1: Schematic representation of the V. cholerae cell with a selection of metabolic pathways
and transporters identified in the genome. This figure is an example how the huge amount of
information from genome annotation can be represented in a comprehensive and user friendly way.
The figure is from Heidelberg et al. (2000).

.

1.3.1 Dynamic programming

The oldest sequence comparison method that is still part of recent methods was

developed by Needleman & Wunsch (1970). Their method is based on the general

dynamic programming algorithm which was introduced in the 1950s by Bellman

(1957), and allows the optimal alignment of two sequences. Two sequences with

length n and m form an n×m matrix. For each position in the matrix (n[i],m[j])

a numeric value scores how favourable a replacement of the residue/nucleotide n[i]

with m[i] or alternatively a deletion or insertion is. See section 1.3.2 below for

a discussion of substitution scores. Generally these are negative for unfavourable

substitutions (e.g. aligning tryptophan with a lysine), and positive for conservative

substitutions such as lysine to arginine.
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Global sequence comparison via dynamic programming aligns two sequences from

the first to the last position in both sequences, and produces a global alignment.

Even if only a region in the middle of one sequence shares similarity with a region

of the other sequences, the algorithm will try to align the sequences over their full

lengths. This may result in a drop of the overall score of the alignment, because

the ends of the alignment may contribute negative scores, and the sum of the scores

may therefore then not be significant.

The local alignment is a development based on the method from Needelman and

Wunsch and was introduced by Smith & Waterman (1981). It solves the problem of

forcing an alignment over the entire sequence. This method is fundamental to many

other methods applied in this work, and is therefore explained in more detail below.

The formal rule to fill each cell of the n ×m matrix is given in equation 1.1. j

describes a position in n and i describes a position in m, d is a fixed negative score

for a gap (the gap penalty) and score is a judgement of the biological significance

for aligning residue n[j] with m[i].

F (i, j) = max



F (i− 1, j)− d deletion at position j (cell above)

F (i− 1, j − 1) + score(a, b) substitution i, j (diagonal cell)

F (i, j − 1)− d insertion at position j (cell to the left)

0 stop for local alignment

(1.1)

In equation 1.1 scores for a deletion or insertion are fixed. Generally the costs of

introducing a gap is set higher than for extending an existing gap. The substitution

score is taken from a lookup matrix described in more detail below. If deletion,

insertion or substitution gives a negative score, the stop condition holds, and the

local alignment is terminated. The matrix can be filled row by row or column by

column.

As an example the two sequences ‘HEAGAWGHED’ and ‘PAWHEAE’ are aligned us-

ing the method from Smith and Waterman. The matrix below shows the calculated

scores from which the optimal path can be traced back. This is the optimal local

alignment. Note that each cell of the matrix contains the sum of its own score and
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the last highest scoring cell as determined by equation 1.1. Matrix cells of the op-

timal path are shown in red.

(j) H E A G A W G H E D

(i) 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 0 0 0 0

W 0 0 0 0 2 0 20 18 4 0 0

H 0 10 2 0 0 0 12 12 22 14 6

E 0 2 16 8 0 0 4 10 18 28 19

A 0 0 8 21 13 5 0 4 10 20 12

E 0 0 6 13 18 12 4 0 4 16 24

The resulting alignment is shown below:

(j) A W G H E - D

(i) A W - H E A E

Often there can be more than one optimal path through the matrix. If the

local alignment method is applied to align two three-domain proteins where the N-

terminal and the C-terminal domains of the two proteins are homologous but the

central domain is not homologous, there will be two paths with high score sums

through the matrix. Distinguishing alignments based on homology from those pro-

duced by chance similarity is critical for sequence comparison methods, i.e. it is

critical to find paths through the matrix that rely on evolutionary relationships.

The basis of local alignment statistics and probabilities are discussed below in sec-

tion 1.3.4.

Sequence search and alignment methods based on dynamic programming are de-

pendant on the length of both sequences to be compared. Every cell in the matrix

has to be filled to find high scoring paths. The runtime of the algorithm is propor-

tional to the product of the length of both sequences to be aligned. Comparing a

single sequence with sequences from a protein database with generally several hun-

dreds of thousands of sequences is time consuming, and the algorithm is therefore

not applicable for large scale sequences searches.
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1.3.2 Substitution matrices

An ideal substitution matrix scores a biologically meaningful alignment with pos-

itive scores and all chance alignments with negative scores. A scoring matrix is a

20 × 20 matrix, with each row/column representing a score for a particular amino

acid substitution. Each cell contains a score that is based on the probability for

exchanging amino acid i with amino acid j. The general formula for all substitution

matrices with negative expected score is:

Sij =
log

qij
pipj

λ
(1.2)

where qij is the target substitution frequency (the observed frequency with which

amino acid i is replaced by amino acid j) usually calculated from homologous pro-

teins. All target frequencies for a given amino acid are > 0 and sum to one; pi

and pj are background frequencies (the overall frequencies with which i and j are

observed). The product of the background frequencies can be thought of as the

probability of exchanging i and j by chance. Furthermore, the normalisation by the

background frequencies implies that conservative exchanges for rare amino acids are

weighted stronger. Sij is multiplied by a factor (10 for the original PAM matrices)

and then rounded to the nearest integer. These are the scores that are stored in

the substitution matrix as shown in table 1.2 and are usually referred to as ’log-

odds’ (the log-odds for BLOSUM matrices are based on log2 whereas the original

PAM matrix was based on log10). The logarithm is used for computational reasons

to avoid multiplications of the substitution scores of the cells of the optimal path

through the dynamic programming matrix. The log-odds are divided by a scaling

factor λ that is specific for the scoring system.

A substitution matrix is uniquely determined by its target frequency (the back-

ground frequencies are the same for different matrices). The assumption for most

scoring matrices is that the expected score Sij for a chance amino acid substitution

in a comparison of two random sequences is negative. Otherwise chance alignments

gave positive cumulative scores by just extending over a sufficient length.

The most common matrices are PAM and BLOSUM. Generally the choice of the

substitution matrix is crucial for the performance of sequence database searches,

although no single scoring system is the best for all purposes. The best way to

distinguish between real and chance alignments of a given class is to choose a matrix
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for which the target frequencies specifically characterise this class (e.g. a protein

family). This aspect is treated in more detail in a later section.

The PAM matrices

The Point Accepted Mutation (PAM) matrix models the evolutionary distance be-

tween sequences of closely related proteins (Dayhoff et al., 1978). A matrix cell gives

the probability of amino acid i to be replaced with amino acid j after a given evo-

lutionary interval which is given in PAM. One PAM is the probability of a residue

to be mutated during an evolutionary distance in which one point mutation was

accepted in 100 residues (i.e. 1% mutations). 100 PAMs do not necessarily mean

that all residues are mutated, some residues may have been mutated several times,

including mutations that restore the original amino acid, and some residues may not

have changed at all. The mutation data to calculate the PAM matrix were collected

from closely related proteins.

PAM matrices for longer evolutionary distances can be obtained by multiplying

each target exchange frequency of the PAM1 matrix n times with itself to generate

a PAMn matrix.

Sequence comparisons using a PAM matrix generally do not perform well in de-

tecting more distantly related sequences. In particular the theoretical extrapolation

from the experimentally derived PAM1 matrix to higher order PAM matrices to

model a longer evolutionary distance does not take into account the conservation of

functionally important sequence regions and may therefore overestimate mutability.

The BLOSUM matrices

The BLOSUM matrices (Henikoff & Henikoff, 1992) were derived from the BLOCKS

database (see page 20). The frequencies of amino acids from conserved sequence

blocks were tabulated, and the probabilities for target and background frequencies

were calculated. To reduce multiple contributions of several closely related proteins,

the sequences were clustered within blocks. Each cluster was treated as a single se-

quence. Clusters for different identity levels were built to produce different matrices

allowing sequences > n% identity to be included in a cluster. The most commonly

used matrices are BLOSUM50, BLOSUM62 and BLOSUM80, where the number

indicates the n% cut-off.
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A R N D C Q E G H I L K M F R S T W Y V

A 5 -4 -2 -1 -4 -2 -1 0 -4 -2 -4 -4 -3 -6 0 1 1 -9 -5 -1

R -4 8 -3 -6 -5 0 -5 -6 0 -3 -6 2 -2 -7 -2 -1 -4 0 -7 -5

N -2 -3 6 3 -7 -1 0 -1 1 -3 -5 0 -5 -6 -3 1 0 -6 -3 -5

D -1 -6 3 6 -9 0 3 -1 -1 -5 -8 -2 -7 -10 -4 -1 -2 -10 -7 -5

C -4 -5 -7 -9 9 -9 -9 -6 -5 -4 -10 -9 -9 -8 -5 -1 -5 -11 -2 -4

Q -2 0 -1 0 -9 7 2 -4 2 -5 -3 -1 -2 -9 -1 -3 -3 -8 -8 -4

E -1 -5 0 3 -9 2 6 -2 -2 -4 -6 -2 -4 -9 -3 -2 -3 -11 -6 -4

G 0 -6 -1 -1 -6 -4 -2 6 -6 -6 -7 -5 -6 -7 -3 0 -3 -10 -9 -3

H -4 0 1 -1 -5 2 -2 -6 8 -6 -4 -3 -6 -4 -2 -3 -4 -5 -1 -4

I -2 -3 -3 -5 -4 -5 -4 -6 -6 7 1 -4 1 0 -5 -4 -1 -9 -4 3

L -4 -6 -5 -8 -10 -3 -6 -7 -4 1 6 -5 2 -1 -5 -6 -4 -4 -4 0

K -4 2 0 -2 -9 -1 -2 -5 -3 -4 -5 6 0 -9 -4 -2 -1 -7 -7 -6

M -3 -2 -5 -7 -9 -2 -4 -6 -6 1 2 0 10 -2 -5 -3 -2 -8 -7 0

F -6 -7 -6 -10 -8 -9 -9 -7 -4 0 -1 -9 -2 8 -7 -4 -6 -2 4 -5

R 0 -2 -3 -4 -5 -1 -3 -3 -2 -5 -5 -4 -5 -7 7 0 -2 -9 -9 -3

S 1 -1 1 -1 -1 -3 -2 0 -3 -4 -6 -2 -3 -4 0 5 2 -3 -5 -3

T 1 -4 0 -2 -5 -3 -3 -3 -4 -1 -4 -1 -2 -6 -2 2 6 -8 -4 -1

W -9 0 -6 -10 -11 -8 -11 -10 -5 -9 -4 -7 -8 -2 -9 -3 -8 13 -3 -10

Y -5 -7 -3 -7 -2 -8 -6 -9 -1 -4 -4 -7 -7 4 -9 -5 -4 -3 9 -5

V -1 -5 -5 -5 -4 -4 -4 -3 -4 3 0 -6 0 -5 -3 -3 -1 -10 -5 6

Table 1.2: PAM70 amino acid substitution matrix. Cells contain the log odds of a particular
amino acid substitution probability after 70 PAMs. Note that the matrix is symmetric.

The BLOSUM matrices perform better in sequence alignments and homology

searches than the PAM matrices, especially in detecting more distant homologies

(e.g. Henikoff & Henikoff (1993); Russell et al. (1998a)). The matrices are con-

structed from sequences of any evolutionary distance without any theoretical ex-

trapolation. There are substantial differences in the amino acid mutability when

comparing BLOSUM and PAM (Henikoff & Henikoff, 1992).

1.3.3 The basics: BLAST and FastA

Several heuristics to speed up sequence searches have been developed. Here the

BLAST (Altschul et al., 1990) method is discussed in more detail, because BLAST

and its derivatives have been applied extensively in this work. Significant sequence

similarity may be found by a simple comparison of short regions of a few amino acids

length without performing dynamic programming. If the initial step was successful,

more sensitive but time consuming refinement steps are applied (including dynamic

programming). Methods based on such simple comparisons are heuristics and do

not guarantee an optimal alignment between two sequences. Nevertheless, when

comparing a query sequence to a sequence database, generally most of the sequences
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do not share any homology with the query, and may be skipped by the fast heuristic

step, reducing the search space to which the more detailed comparisons are applied.

The FastA heuristic

Wilbur & Lipman (1983) introduced the first heuristic method to search a query

sequence against a database of sequences. This method has been subsequently im-

proved in the FastP and later in the FastA methods (Pearson & Lipman, 1988; Pear-

son, 1990). The FastA method can be applied to nucleotide or peptide sequences.

There are five major steps in the algorithm:

1. Identify matching ‘words’ between two sequences (the query and a database

sequence) that share identical pairs of amino acids (ktup = 2, a word of two

residues).

2. Find regions of high density of identities. This is done by finding the words

that are on the same diagonal of a plot between the two sequences. These

words are extended to merge with other existing words to form a region if the

distance of the previous word or region in residues is smaller than the score of

the current region or word match.

3. Re-score the ten highest scoring regions using a PAM250 matrix, and trim or

extend the ends of these to optimise their score. This is a partial alignment

without gaps.

4. If there are several regions above a given score cut-off, these regions are joined

via dynamic programming, producing a gapped alignment if their score can

be improved (the overall score is the sum of the scores of the regions minus a

penalty score for gaps). This score is called initn, and is used as a rank of the

database sequence.

5. For the top ranking sequences, a local alignment is constructed with the query

sequence using a centred 32 residue window on top of the best initn region.

The resulting score is the optimised score that is reported.

The initial search step may not reduce the number of sequences substantially, but

it reduces the subsequent more detailed and time consuming searches to only a few

regions of the sequence that have to be compared in more detail. The calculation
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of the initn value reduces the number of regions and sequences for which Smith-

Waterman local gapped alignments have to be produced. In summary, the FastA

method speeds up sequence database searches by reducing the time consuming dy-

namic programming to a set of matrices per sequence which are in total smaller

than the complete n×m matrix.

The BLAST heuristic

The original BLAST method (Basic Local Alignment Search Tool, Altschul et al.

(1990)) uses heuristics similar to FastA to find candidate sequences, but BLAST

is even faster then FastA. The original BLAST method produced un-gapped align-

ments and was refined (Altschul & Koonin, 1998; Schaffer et al., 2001) to gain more

sensitivity (including gapped alignments) and speed. The steps of the method im-

plemented in BLAST series 2.0 (Altschul & Koonin, 1998) for amino acid sequences

are described below (the steps for nucleotide sequences are similar).

1. Find word pairs of a given length (usually 3 residues for proteins) for which

the cumulative score is at least T . A word satisfying this condition is called a

hit. Scores are taken from a standard matrix such as BLOSUM or PAM.

2. If the two sequences contain at least two non-overlapping hits within a distance

A on the same diagonal then the extension of these matches is triggered. If

two hits overlap, the most recent one is ignored. This two-hit method reduces

the number of triggered extensions, which is the most time consuming step in

BLAST.

3. If the previous conditions are satisfied, the un-gapped bidirectional extension

of the second hit is triggered using the same substitution matrix as in the first

step. The extension terminates if its cumulative score cannot be improved

anymore, and the score is > S. A step in the heuristics to speed up the

extension procedure is to terminate an extension if it reaches another hit with

a score that falls a certain distance below the previous shorter extension. The

extended hit may include other hits. An extended hit is called an HSP (High

scoring Segment Pair).

4. The highest scoring HSP with a score > Sg is further extended in both di-

rections via a gapped alignment. Only the highest scoring HSP is extended

because most of the HSPs will be included in this gapped extension.
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5. The final alignment for hits for which a gapped extension produced a high

score are re-aligned with relaxed alignment parameters. This increases the

extent of the alignment.

BLAST performs far fewer local alignments compared to FastA and is therefore

much faster. Like FastA, gapped extensions are only performed on a relatively small

region within a sequence.

1.3.4 Basic statistics and probabilities for local alignments

The scoring system is crucial in distinguishing between real and chance alignments,

and equation 1.2 gives most of the basic statistics of a scoring system. Sequence

search methods employ a scoring system to judge whether similarity could have

arisen by chance, and for heuristics such as BLAST whether a more time consuming

comparison has to be performed.

The basic statistics for the score distributions from local ungapped alignments

has been described by Karlin and Altshul (Karlin & Altschul, 1990, 1993; Altschul

& Gish, 1996). The distribution of scores for hits between a real sequence and a set

of randomly generated sequences can be approximated with an extreme value distri-

bution. Scores as given in equation 1.2 are summed over the region participating in

a hit. Figure 1.2 shows scores that are approximated with an extreme value distri-

bution. Since this score distribution is the result of chance alignments, biologically

meaningful scores should be distributed at the long tail end of the distribution, and

the location of this score on the distribution can be treated as a confidence level for

this score (Karlin & Altschul, 1990). The formal description of this confidence is

given in equation 1.3 which is the probability to find at least one random alignment

with a score S > x. This probability is also known as a P -value. K is another

constant that depends on the scoring system, and mn is the product of the lengths

of the sequences that are compared. For database searches mn is the product of the

length of the query sequence and the search space of the database.

P (S > x) = 1− e−Kmne−λx (1.3)

The score S depends on the scoring system via K,λ and special scores for the

introduction of gaps and gap extensions (λ is the same as in equation 1.2). It is

useful to convert this score into a score S ′ that is independent of the scoring system
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Figure 6. The distribution of optimal local alignment scores from the
comparison of a position-specific score matrix with 10 000 random protein
sequences. The score matrix was constructed by PSI-BLAST from the 128 local
alignments with E-value ≤0.01 found in a search of SWISS-PROT using as
query the length-567 influenza A virus hemagglutinin precursor (27) (SWISS-
PROT accession no. P03435). The random sequences, each of length 567, were
generated using the amino acid frequencies of Robinson and Robinson (20).
Optimal local alignment scores were calculated using the position-specific
matrix in conjunction with 10 + k gap costs. The extreme value distribution that
best fits the data (3,15) is plotted. A χ2 goodness-of-fit test with 34 degrees of
freedom has value 41.8, corresponding to a P-value of 0.20.

lowest E-value found, as well as the number of shuffled sequences
yielding E-values ≤1 and 10. For comparison, we performed the

identical shuffled-database test on the gapped and original
versions of BLAST. To reduce the probability that high-scoring
alignments were missed due to the heuristic nature of the
algorithms, we performed these tests with T = 9 rather than the
default value of 11. The results are given in Table 2. For the 11
queries, the median of the low PSI-BLAST E-values was 0.87,
which corresponds to a median P-value of 0.58 (8,9). The mean
numbers of shuffled database sequences with E-values <1 and 10
were 1.0 and 8.7, respectively, within 20% of the expected values
of 1.0 and 10.0. The equivalent tests for the ungapped and gapped
versions of BLAST also yielded results that diverged from theory
by <50%.

The ability to estimate with reasonable accuracy the signifi-
cance of gapped local matrix-sequence alignments permits us to
automate the construction of position-specific score matrices
during multiple iterations of the PSI-BLAST program. After each
iteration, we generate a new multiple alignment simply by
collecting those alignments with E-value lower than a defined
threshold. An interactive version of PSI-BLAST allows the user
to override either the inclusion or exclusion of specific local
alignments. Once a given database sequence has been used in the
generation of a position-specific score matrix, low E-values for
this sequence are virtually guaranteed in future iterations, for the
sequence is to a certain extent being compared with itself. The
biological relevance of PSI-BLAST output thus depends criti-
cally on avoiding the inappropriate inclusion of sequences in the
multiple alignment constructed. Specifically, the utility of the
score matrix produced is immediately vitiated by the inclusion of
any alignment involving a region of highly biased amino acid
composition (57,58).

Table 2. The comparison of various query sequences with a shuffled version of SWISS-PROT

Protein family SWISS-PROT Original BLAST Gapped BLAST PSI-BLAST
accession no. Low No. of seqs Low No. of seqs Low No. of seqs
of query E-value with E-value E-value with E-value E-value with E-value

≤1 ≤10 ≤1 ≤10 ≤1 ≤10

Serine protease P00762 0.86 1 7 3.0 0 4 0.94 1 8

Serine protease inhibitor P01008 3.9 0 4 0.078 1 9 1.5 0 9

Ras P01111 3.4 0 8 3.4 0 7 1.1 0 9

Globin P02232 2.4 0 7 2.8 0 5 8.2 0 2

Hemagglutinin P03435 0.11 2 11 0.46 3 16 0.87 1 8

Interferon α P05013 2.4 0 6 0.27 2 4 0.11 2 11

Alcohol dehydrogenase P07327 1.5 0 2 0.80 1 5 1.5 0 9

Histocompatibility antigen P10318 0.91 1 7 0.13 1 7 0.0031 2 6

Cytochrome P450 P10635 0.84 2 5 8.5 0 3 0.46 1 15

Glutathione transferase P14942 1.0 1 10 3.3 0 3 0.30 2 9

H+-transporting ATP synthase P20705 0.012 1 8 0.26 2 14 0.79 2 10

Average (median or mean) 1.0 0.7 6.8 0.80 0.9 7.0 0.87 1.0 8.7

The original and gapped BLAST comparisons use BLOSUM-62 substitution scores (18). All three programs use threshold T parameter set to 9, but the gapped
BLAST and PSI-BLAST programs use the two-hit method to trigger ungapped extensions. The original BLAST program has the X dropoff parameter set to nominal
score 23. The gapped BLAST and PSI-BLAST comparisons charge gaps of length k a cost of 10 + k. They have Xu set to 16, and Xg set to 40 for the database search
stage and to 67 for the output stage of the algorithms. Gapped alignments are triggered by a score corresponding to ∼22 bits. For PSI-BLAST, the query is first com-
pared to the SWISS-PROT database, and the position-specific score matrix generated is then compared to a shuffled version of SWISS-PROT. The median is used
for the average of the low E-values, and the mean otherwise.

Figure 1.2: Random alignment scores can be approximated by an extreme value distribution.
The figure is taken from Altschul & Koonin (1998) (figure 6). A position specific scoring matrix
generated by PSI-BLAST (see section 1.3.5) was compared to 10,000 randomly generated protein
sequences.

to compare results obtained from searches that use different substitution matrices.

A normalised score S ′ is expressed in bits which can be obtained from the scaling

constants of the scoring system and the score distribution. Equation 1.4 gives the

formal description of this normalisation.

S ′ =
λS − lnK

ln2
(1.4)

The reliability of an alignment in BLAST and other programs is given as an

e-value, described in equation 1.5.

e(S ′) = mn2−S
′

(1.5)

e(S ′) = Kmn exp(−λS)(directly calculated from the raw score) (1.6)

The e-value is the number of expected chance hits with a score > S ′. Doubling

the length of the query sequence or database doubles the number of expected chance

hits, and the number of expected chance hits decreases exponentially with increasing

score. Note that e(S ′) is found in the exponent of equation 1.3.

Another confidence measure that requires a substantial sample of the score dis-

tribution is the z-score. It is defined as the distance of an the alignment score S from

the mean µ of the distribution of all scores of the analysis divided by the standard
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deviation σ of the score distribution (score = (S − µ)/σ). The normalisation by

the standard deviation of the distribution ensures that even high scores with a short

distance to the mean get relative low z-scores if the score distribution is flat, e.g.

if there are many chance hits. A z-score is as defined above is only informative for

normally distributed scores. However, it is possible to calculate P-values for z-scores

that are derived from an extreme value distribution of scores (personal communica-

tion with William Pearson). Therefore z-scores may be used as confidence measures

for local alignments such as in the FastA (Pearson, 1990).

All equations in this section and equation 1.2 have only been proven to hold for

ungapped local alignments, but computational analysis and some analytical work

suggest the same applies to gapped local alignments (Karlin & Altschul, 1990, 1993;

Altschul & Gish, 1996; Altschul et al., 2001). Extreme value distributions fit scores

from gapped local alignments of randomly generated sequences well using standard

background frequencies (Robinson & Robinson, 1991) and a standard substitution

matrix such as BLOSUM62 with standard gap opening and extension scores (Wa-

terman & Vingron, 1994; Altschul & Koonin, 1998; Altschul & Gish, 1996), from

which the scale parameters λ and K are derived. These parameters cannot be deter-

mined analytically for gapped local alignments. However, Mott (2000) derived an

empirical formula from a large number of simulation with different scoring systems

to calculate λ. For ungapped local alignments these parameters are analytically

derived from the scoring system (Karlin & Altschul, 1990). The FastA method

generates enough optimal gapped local alignments between unrelated sequences for

each run to have a basis from which to λ and K can be estimated. The BLAST pro-

gram generates gapped alignments only for potentially related sequences and cannot

estimate the parameters from these scores. Therefore BLAST uses pre-estimated

parameters from simulations for different standard matrices and gap opening and

extension costs (Altschul et al., 1997).

1.3.5 Sequence specific profiles and PSI-BLAST

As mentioned at the beginning of section 1.3.2, none of the standard substitution ma-

trices optimally describes the target frequencies of a particular class of sequences. A

position specific scoring matrix (PSSM) or sequence profile is specifically constructed

for a particular class of proteins. A PSSM has the dimensions n × 20, where n is
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the length of the sequence. At each position ni of the matrix, a substitution score

for each of the 20 amino acids is given. The main difference to the standard substi-

tution matrices is that the score for the same amino acid type can differ depending

on the position within the sequence. Usually a PSSM is constructed from a multi-

ple sequence alignment, for example from a set of already identified homologues and

may be subsequently refined by pulling in more distant homologues when a database

is searched with the PSSM. Earlier profile methods (e.g. Patthy (1987); Gribskov

et al. (1987); Taylor (1986); Yi & Lander (1994); Tatusov et al. (1994)) used rather

complex procedures involving several programs with substantial user intervention.

The PSI-BLAST method (Altschul et al., 1997; Schaffer et al., 2001) combines all

the required steps, automatically constructs a PSSM and uses this profile to search

a sequence database. A comparison of several sequence database search methods

showed that PSI-BLAST is about three times more sensitive than BLAST or FastA

in detecting remote homologues (Park et al., 1998).

Figure 1.3 shows the basic steps of the PSI-BLAST procedure. First, a standard

BLAST, as described in section 1.3.3, is performed using a standard substitution

matrix (e.g. BLOSUM62) and a sequence database. From this run those sequences

satisfying a given e-value cut-off are stored, and a multiple sequence alignment is

constructed from these sequences. This multiple alignment is converted into a PSSM

which is then used in the second search round instead of the query sequence and

the standard substitution matrix to search the sequence database via the BLAST

algorithm. The difference between this step and the original BLAST is just that the

PSSM itself contains the information about the query sequence and the substitution

matrix. The procedure of searching the database and re-constructing a new PSSM

after every round is repeated until no more sequences with sufficient e-value can be

added to the list of sequences of the previous round or a given maximum number

of rounds has been reached. The result is a list of sequence alignments of the last

round that are of sufficient e-value.

Construction of a Position Specific Scoring Matrix

A multiple alignment is constructed by stacking all sequences found in a search

round with an e-value ≤ the cut-off. Sequences identical to the query are skipped,



Introduction 36

Position Specific
Scoring Matrix (PSSM)

     A  R  N  D  C ...
1 M -2 -3 -4 -5 -2 ...
2 N -3 -3  4 -7 -2 ...
3 L -1 -4 -4 -5 -1 ...
4 Y -4 -3 -4 -6 -4 ...
5 D  0  0 -1  3 -3 ...
6 L -1 -2 -5 -5 -1 ...

Convert
to PSSM

Input/Query
Sequence

New Sequence Hits

No Yes

BLAST
search

Result
Iterative
search

Multiple Sequence
Alignment

MNLYDLLELPTTASIKIAYRLA

Protein Sequence
Database

List of
Sequence Hits

List of
Sequence Hits

create 
multiple sequence

alignment &
purge highly similar

sequences

add
to

Return

filter hits
(E-value < x)

START

BLOSUM62

Figure 1.3: Overview of the PSI-BLAST procedure. The procedure starts by running BLAST
for a query sequence against the sequence database using a standard matrix (here BLOSUM62).
In the next round the PSSM, instead of the query sequence and the BLOSUM62 matrix, is used
for the database search. A new PSSM is constructed in every round until no new sequences can
be found. A search cycle is called iteration. See text for more details.

and for sequences with very high sequence identity (> 97% in PSI-BLAST version

2.0 and > 93% in version 2.1) only one representative sequences is kept. The final

multiple sequence alignment M has residues or gap characters in every column and

row. For the calculation of the sequence weight for a column in the PSSM only

those rows (sequences) are considered that contribute a residue or gap to that row.

Sequences contributing to a column of the multiple alignment are weighted in a

similar way as for the construction of the BLOSUM matrices described in (Henikoff

& Henikoff, 1992). Closely related sequences can bias the PSSM. This bias can be

avoided by weighting each sequence according to its individual information content.

Gaps are treated as the 21st distinct character of the amino acid alphabet, and any
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column consisting of identical characters are ignored for calculating the individual

weight factor for a sequence. This weight scales the raw observed residue frequency

for a given column i of the PSSM, giving the weighted residue frequency fi. Fur-

ther the relative number of independent residue observations NC is calculated as

the mean of the number of different amino acid types observed at a position. The

maximum of NC is 21, but for most columns in the multiple alignment NC is much

smaller. NC is a per column scaling factor reflecting alignment variability.

A general frequency probability Qi/Pi with Q being the target frequency and P

being the standard background frequency on which equation 1.2 is based on is not

appropriate for the probability estimation for the PSSM, because of the weighting

issues discussed above. A small sample size (some alignments may just have a few

sequences at some columns) and the necessity for the prior knowledge of the relation-

ships among the residues requires a different probability scheme. The calculation of

Qi for a position in the PSSM includes the target frequency qij that was used for

the initial substitution matrix (see equation 1.2) to make use of the prior knowledge

of the residue relationships. Equation 1.7 calculates a pseudocount (Tatusov et al.,

1994) for a given column in the PSSM where qij is the target frequency for the

standard substitution matrix from equation 1.2.

gi =
20∑
j=1

fj
Pj
qij (1.7)

Qi =
αfi + βgi
α + β

(1.8)

The target frequency Qi for a position in the PSSM is then given via equation

1.8 which combines the scaled observed frequency with the pseudocount. Therefore

a PSI-BLAST PSSM is a position specific scaled version of the initial substitution

matrix that was used. The factor α is defined as NC−1 to account for the alignment

variability mentioned above. The two equations above imply that for positions in

the query for which the multiple alignment does not have any sequences the initial

substitution score is used. The β factor can be used to increase or decrease the

weight of the initial substitution matrix. Gaps do not have any position specific

scores, constant gap opening and gap extension scores are applied as for the standard

substitution matrices. The actual substitution score is calculated from Qi using

equation 1.2.
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Applying BLAST to a position specific search

The BLAST method is applied in the same way to the PSSM as for a query se-

quence and a standard substitution matrix, assuming the same statistics holds for a

position specific search. The calculation of the normalised score S ′ for hits includes

the scaling parameters λ and K for which Altschul et al. use the same values as for

the initial substitution matrix that was used in the first round (e.g. BLOSUM62).

They showed that the employed scoring system fits well the observed score distribu-

tion. The score distribution from comparisons of random sequences with a PSSM

derived from a real sequence can be fitted by an extreme value distribution (figure

1.2) with the calculated parameters λ and K close to those for gapped simulations

for a BLOSUM62 matrix.

By employing the pseudocount PSI-BLAST makes use of the statistics from

BLAST and the underlying substitution matrix which assumes a standard amino

acid composition of the query sequence and the database. Although the initial anal-

ysis of PSI-BLAST has shown that its statistics fits the observed score distribution,

and the calculation of the e-value approximates the observed error rate within a

range of 20%, there have been problems with the PSI-BLAST statistics for a range

of query sequence the more the sequence differs from the assumed standard amino

acid composition. A BLAST comparison between a query and a database sequence

of similar biased composition may produce a hit with significantly high score be-

cause the standard BLAST statistics does not apply for this sequence pair. Recent

changes in the BLAST and PSI-BLAST algorithms (Schaffer et al., 2001) imple-

mented in the 2.1 series of the program consider biased amino acid compositions.

Especially for PSI-BLAST, biased sequences have a strong impact because in every

iteration the PSSM itself will be biased towards the amino acid composition of the

query, producing even more unreliable results in the next search round (Schaffer

et al., 2001; Altschul & Koonin, 1998).

The most important change to cope with different amino acid compositions is a

PSSM specific λ. For composition biased sequence pairs the standard λ (e.g. that

for the BLOSUM62 scoring system) is generally too big and results in a lower e-

value (lower e-values give more confidence) than justified (Schaffer et al., 2001). A

composition dependant λ′ is therefore generally smaller than the standard λ. It is

computationally too intensive to estimate λ′ by fitting the score distribution for each
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query or PSSM and database sequence pair. Since λu can be determined analyti-

cally (Karlin & Altschul, 1990) for ungapped alignments (it is the unique solution

to sum the scores for a matrix colum given in equation 1.2 to one), a composition

specific λ′u for scores from ungapped alignments is calculated using the amino acid

frequencies of the database sequence and the query. The composition rescaled score

for a matrix cell in the PSSM is then given by λ′u
λu
Sij, where Sij is the non-scaled

score of the PSSM.

As mentioned in section 1.3.4 the statistics for ungapped alignments has been

shown to approximate score distributions for gapped alignments, too. Matrix rescal-

ing is time consuming because it has to be performed for every query database se-

quence pair. Rescaling is only triggered if an alignment produces a significantly high

score using the non-scaled scoring system. The alignment for the sequence pair (or

a PSSM and the sequence) is then recalculated. e-Values as the common confidence

measure for BLAST and PSI-BLAST alignments are more conservative with the

rescaled scoring system and have been shown to be more realistic than the original

e-values (Schaffer et al., 2001).

To avoid the application of the BLAST algorithm to highly biased sequences

with a low amino acid entropy, for which re-scaling may not be sufficient to stop

a corrupted search, a low complexity filter can be applied to remove regions from

the database or query sequence that differ markedly from the standard amino acid

composition. Positions in these low complexity regions are replaced by the ‘X’ char-

acter and are ignored by the BLAST search procedure. Such a filter is implemented

in the BLAST 2.0 and 2.1 series (Wootton, 1994).

Finally, it is worth mentioning that the sensitivity of PSI-BLAST, the ability

to detect even distantly related homologues, depends on the diversity and size of

the sequence database that is used for the search. Generally in every iteration

more distantly related sequences are identified and added to the PSSM. After every

round the PSSM explores evolution a step backward. PSI-BLAST would not be

able to detect the relationship between a query sequence A and a distantly related

sequence B in the database if there were no evolutionary intermediates present in

the database, see e.g. Aravind & Koonin (1999).
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1.3.6 Using sequence profiles with IMPALA

The IMPALA method (Schaffer et al., 1999) compares a query sequence against a

library of PSSM produced by PSI-BLAST. This is particularly useful if one wants

to find the protein or domain family to which a given query belongs. Each family

is represented as one PSSM in the library. Such a library may be constructed by

searching a large sequence database with a member of a characterised protein family

using PSI-BLAST. The final PSSM produced by PSI-BLAST may then be used as

a representation of the protein family.

The comparison of the query sequence with each PSSM is performed via the

Smith-Waterman procedure (see equation 1.1 and text in that section), so that

optimal local alignments are guaranteed. The time consuming Smith-Waterman

procedure is acceptable because a profile library generally contains only a few hun-

dred members representing families or domains rather than hundreds of thousands

of single protein sequences from a database that is used within e.g BLAST and

PSI-BLAST searches. IMPALA faces the same statistical problems calculating sig-

nificance for scores between the query and a PSSM as PSI-BLAST. In fact the

re-scaling procedure to scale a PSSM by λ′u (mentioned in the previous section) was

initially developed for IMPALA and later adapted by PSI-BLAST version 2.1. IM-

PALA performs similarly to PSI-BLAST version 2.0 and 2.1 in terms of sensitivity

and error rate. Since IMPALA and PSI-BLAST version 2.1 use the same re-scaled

scoring system, e-values are very similar, whereas e-values generally differ from those

calculated by the older PSI-BLAST version 2.0.

A recent development is the RPS-BLAST program (Reversed Position Specific,

Marchler-Bauer et al. (2002)) that is a derivative of IMPALA. The query is compared

to the query PSSM via the BLAST heuristics instead of using a Smith-Waterman

dynamic programming as in IMPALA (the program is part of the NCBI BLAST

package).

1.3.7 Hidden Markov Models

Hidden Markov models are a commonly used technique in genome annotation, for

example to identify known protein families (Krogh et al., 1994). An overview of this

technique and its application in sequence comparison is given in a review by Eddy

(1998). A hidden Markov model (HMM) associates different states and the transi-



Introduction 41

tion between these states with probabilities. Protein sequences generated randomly

by an HMM for a particular family should then contain members of this family, or

from a different point of view, sequences with a high probability to be derived from

this model should belong to the family the model describes. HMM based methods

have been used in this work.

Sequences can be represented by first order Markov chains. A letter in a se-

quence is not independent, it depends on the previous letter, but does not depend

on the full list of previous letters in the sequence. An HMM contains different states

which are for example biological meaningful descriptions, such as hydrophobic H

and polar P , to describe different regions within a protein. Between these states

there are transitions, each associated with a probability t to go from one state to

another. All transition probabilities from one to another state must sum to one.

Each state contains emissions which are the 20 amino acids for a protein sequence.

The probabilities of the emissions per state must sum to one. Only the emission

symbols (the amino acid letters) of the model are directly observed, but the states

and the transitions between them are hidden, therefore such a Markov chain is called

a hidden Markov chain. Having introduced the terms transition and emission, the

dependency of a letter in a sequence on the letter of the previous position is in

fact the transition state between two emissions. Inferring a hidden state sequence

(such as the above hydrophobic and polar states) from a protein sequence labels the

protein sequences with biological information of higher order than just the residue

letters in the protein sequence.

Figure 1.4 represents the two state HMM for hydrophobic and polar with the

transitions between these states. The probability that a sequence FYK is modelled

via H → H → P is then given by equation 1.9, the first probability in each term is

t, the second is e.

P (HHP ) = (1 ∗ 0.25) ∗ (0.9 ∗ 0.1) ∗ (0.1 ∗ 0.5) (1.9)

The sum of the probabilities to find the sequence in any of the states is the prob-

ability with which the sequence can me modelled by this HMM. Usually dynamic

programming is used to find the optimal path for a given input sequence through the

HMM, where the rows and the columns of the matrix contain the sequence letters

and the states.
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Figure 1.4: Schematic representation of a two state hidden Markov model, to assign a residue in
a protein sequence to either the hydrophobic H or the polar P state. t is the transition probability,
e gives the probability for emitting a particular amino acid type from this state.

HMMs are used in a wide range of bioinformatics applications, such as (i) gene

prediction where a gene is modelled with different states such as exon-intron struc-

ture (see section 1.2.1), (ii) transmembrane helix prediction of protein sequences

(e.g. Sonnhammer et al. (1998); Krogh et al. (2001); Tusnady & Simon (2001))

where a helix may get states for the helix caps and states for the hydrophobic core

and (iii) the identification of homologous sequence families (Bateman et al., 1999).

Homology based sequence searches using carefully constructed HMMs for protein

families perform better than PSI-BLAST (Park et al., 1998) in detecting distantly

related proteins, but the construction of high quality HMMs on which the perfor-

mance relies is difficult and usually requires several steps and manual inspection

(Bateman et al., 1999, 2002; Letunic et al., 2002; Gough & Chothia, 2002). The key

aspect for the performance of any HMM based application is the design of the HMM

which includes a definition of the states and the associated probabilities e and t.

Profile HMMs that describe a protein or domain family such as in PFAM and

SMART (see section 1.2.3) usually derive the probabilities for e and t from multi-

ple sequence alignments. An initial HMM is constructed that may just contain a

limited number of rather closely related members of the family. This HMM is then

iteratively refined in a similar way PSI-BLAST refines its PSSMs (Bateman et al.,

1999). A HMM in database search round n will detect more divergent members of

the family than in round n− 1, and the new HMM that is constructed after round
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n is used to search the sequence database in round n + 1. The most commonly

used profile HMM packages are HMMer (Eddy, 1998) and SAMT99 (Karplus et al.,

1998). These methods contain programs to construct, refine and manage HMMs

and to search libraries of HMMs with a query sequence.

The states for a sequence profile HMM are (a) the residue positions of the protein

family (from one to the sequence length of members of the family), referred to as

match states, (b) a deletion state between each match state that allows bypassing

a match, and (c) an insertion state between each match state to allow residues to

be inserted between two matches. Figure 1.5 represents a model for a three residue

sequence motif (Eddy, 1998). The two major differences between sequence profiles

such PSI-BLAST PSSMs and HMMs is that a PSSM does not score gaps in a posi-

tion specific way whereas a HMM contains the deletion (gaps) state. Further, in a

HMM a state is dependant on the previous state, whereas a position in a PSSM is

mathematically independent.
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Figure 1.5: A small profile HMM (right) representing a short multiple alignment of five sequences
(left) with three consensus columns. The three columns are modelled by three match states (squares
labelled m1, m2 and m3), each of which has 20 residue emission probabilities, shown with black
bars. Insert states (diamonds labeled i0-i3) also have 20 emission probabilities each. Delete states
(circles labeled d1-d3) are ‘mute’ states that have no emission probabilities. A begin and end state
are included (b, e). State transition probabilities are show as arrows. The figure and the legend
are from Eddy (1998) (figure 2).
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1.4 Protein structure and genome annotation

This section explains why knowledge of the three dimensional structure of proteins

is important. There is a huge discrepancy between the availability of protein se-

quences and their 3D-structures. Currently there are more than 800,000 different

sequences in the public databases (12/2001, ftp://ftp.ncbi.nlm.nih.gov/blast/db/),

but there are less than 16,000 experimentally determined protein structures in the

Protein Data Bank (PDB, 12/2001, http://www.rcsb.org, Berman et al. (2000)),

and these contain redundancies such as structures with point a mutation. Despite

the difference in absolute numbers, the sequence and the structure databases both

grow exponentially.

1.4.1 Functional and evolutionary insights from protein struc-

ture

The 3D-structure of a protein determines its biochemical function. Homology based

sequence comparisons and motif searches to identify the function of a protein are

therefore simplifications because these searches only consider 1D-information. How-

ever, divergent sequences often share a similar 3D-structure that accepts to some

extent a range of amino acid substitutions. The 3D-structure is generally more

conserved than the 1D-structure (the sequence), see e.g. Chothia & Lesk (1986)

and Murzin et al. (1995). Figure 1.6 shows the dependency of the structural sim-

ilarity measured as the root mean square of Cα distances of homologous protein

domains and the sequence identity between these domain pairs. At about 20-25%

sequence identity the 3D-similarity starts to decrease dramatically. Distantly re-

lated sequences with less than 20% sequence identity (the twilight zone) generally

only share a similar structural scaffold, a common fold, with differences in struc-

tural details which usually determine the biochemical function (Hegyi & Gerstein,

1999; Wilson et al., 2000). However, an analysis from Wood & Pearson (1999) using

z-scores for a sequence-structure comparison showed a linear relationship between

z-scores of the sequences members of a fold and the z-scores of their structural align-

ments.

Wilson et al. (2000) analysed the relationship between sequence identity and

function, and structural similarity and function. For enzyme domains with an RMSD

ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://www.rcsb.org
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in the twilight zone (according to the percent iden-
tity to Pseq calibration in Figure 4(b)), structural
similarity is more signi®cant than sequence simi-
larity (having a smaller P-value or more negative
log P-value). In contrast, for pairs with more than
�30 % identity, the situation is reversed, with a
given pair having more signi®cant sequence simi-
larity than structural similarity. One possible
interpretation of this reversal is as follows. Struc-
ture is always more highly conserved than
sequence, so usually a given amount of structural
similarity is not as signi®cant as a corresponding
amount of sequence similarity. However, this is
true only when meaningful sequence similarity

actually exists; thus, it does not apply in the twi-
light zone, where sequence similarity is by de®-
nition not signi®cant. Note that all pairs in our
comparison share at least the same fold, implying
that they always have a signi®cant amount of
structural similarity.

In other words, for closely related sequences,
differences in sequence similarity are more mean-
ingful, whereas for highly diverged sequences that
share the same fold, the differences in structural
similarity are more signi®cant.

Fitting two lines to the Pstr versus Pseq graph
suggests that the same might be done for other
scoring schemes. It is possible to some degree to ®t

Figure 2. RMS as a function of percent identity. (a) A simple scatter plot of our pairs, relating RMS separation to
percent sequence identity. This is similar to the presentation given by Chothia & Lesk (1986), but in this survey we
looked at 30,000 pairs, 1000 times the number they compared. Outliers (pairs with RMS scores further than two stan-
dard deviations from the mean for their percent identity) are excluded from this graph; they represent domains that
are very closely related with the exception of a conformational change. (b) A simpli®ed graph with a number of ®ts
to the data. For each percent identity bin we show the median RMS value, indicated by (^) and the top and bottom
quartile RMS values, indicated by the bars. Two ®ts are drawn through the median RMS values. The thin line,
labeled SINGLE, is a simple exponential ®t through the medians. It has the form:

R � 0:21e0:0132H

where R is the RMS deviation after least-square ®tting, H is the percent difference between the sequences (H for
Hamming distance), and H � 100 % ÿ I, where I is the percent sequence identity. The thick line, labeled MULTI, is a
multigraph ®t, which is described in the legend to Figure 4. The relation between RMS and percent identity according
to this ®t is expressed by the equation:

R � 0:18e0:0187H

The twilight zone of sequence identity and below is labeled TZ. In this region, sequence similarity is not signi®cant
and not reliable for predicting structural similarity. This is why the median values in this area of the graph deviate
signi®cantly from the ®ts, which consider only data above 20 % sequence identity. For reference we include the orig-
inal data points from Chothia and Lesk's, 1986 paper (A.M. Lesk, personal communication), indicated by X. Their
data follow the form:

R � 0:40e0:0187H

The difference between the Chothia & Lesk trend and our relationship is due to the different trimming methods used
in calculating the RMS score. Chothia and Lesk imposed a 3 AÊ cut-off in determining the conserved core residues; we
de®ned the core as the better matching (in terms of Ca distances) half (50 %) of the residue pairs. (c) and (d) The
effect our trimming has on median RMS values. The RMS values in (c) are calculated from all the matched residues
in each pair; the values in (d) are calculated from the better matching 50 % of the residues.
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Figure 1.6: Relationship between sequence identity and structural similarity. RMS deviation of
superimposed structural domains as a function of percentage identity. Scatter plot of homologous
superfamily domain pairs from the SCOP database (see section 1.4.4). The plot is similar to an
earlier presentation by Chothia & Lesk (1986) but considers 1,000 times more domain pairs (30,000
in total). TZ denotes the twilight zone of sequence similarity where inferring structural similarity
gets unreliable. Only the best 50% of superimposed Cα atoms per pair where included in the RMS
calculation (50% trim). Figure 2(a) from Wilson et al. (2000).

of 1Å 90% of the domains pairs have the same broad function. This structural simi-

larity can be mapped to the start of the twilight zone sequence similarity (about 25%

sequence identity) in figure 1.6. For a 90% chance of a precise match of function of

two structures a similarity of about less than 0.6Å RMSD is required corresponding

to 40% sequence identity. These thresholds of sequence identity are also supported

by other work (Devos & Valencia, 2000; Todd et al., 2001). Hegyi & Gerstein (1999)

showed with their analysis, that the functional diversity of protein domains decreases

approximately as a function of the exponent of the e-value threshold of the align-

ment between a protein domain and its functionally annotated homologues in the

SwissProt database (see section 1.2.3 for a description of SwissProt). The plot of

this sequence/function relationship is shown in figure 1.7.

The analysis described above is based on single domains. For multi-domain pro-

teins function is less conserved between proteins than for single domain proteins,

and even proteins with the same domain combination may not have the same func-

tion (Hegyi & Gerstein, 2001). This renders functional flexibility of folds of domains

in a different context.

The relationship between structure and function raises the question whether
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Figure 1.7: Multi-functionality of protein domains versus e-value threshold. A domain has mul-
tiple functions if at least two homologues of different function from the SwissProt database can be
identified for this domain. The e-value of the alignment between homologous pairs is plotted as
the negative logarithm to the base of 10 against the fraction of domains with multiple functions
(i.e. increasing values on the x-axes indicates more confidence in the homologous relationship).
Starting from an e-value of 10−5 (log10 − 5) multi-functionality decreases exponentially. Figure 7
from Hegyi & Gerstein (1999).

there is a relationship between a particular function and a fold. Studies from Mar-

tin et al. (1998) showed only little preference of a function to be associated with

a particular protein fold. However, other results (Hegyi & Gerstein, 1999; Wilson

et al., 2000) show a significant bias of certain folds with a particular group of func-

tions. E.g., mixed α/β-folds are often associated with enzymatic domains whereas

all-α domains are biased towards non-enzymatic function. On the other hand there

are a few folds such as the TIM (Triose-phosphate Isomerase) barrel that provides

a generic scaffold to fulfil a broad range of enzymatic functions.

Todd et al. (2001) showed that 25% of the homologous superfamilies of simi-

lar structure have different enzymatic function, highlighting the divergent evolution

within these superfamilies. Most functional changes within a related set of sequences

are due to a change in the substrate but maintain the same reaction mechanism

(Holm & Sander, 1997; Todd et al., 2001).

Due to the structural conservation of proteins the number of distinct 3D-archi-

tectures for globular proteins has been estimated to be limited between 1,000 and

7,000 (Brenner et al., 1997; Govindarajan et al., 1999; Zhang & DeLisi, 1998; Wolf

et al., 2000). This means that many proteins have the same or a very similar general

architecture of secondary structure elements (α-helices and β-sheets), although their

peptide sequences may not show obvious similarity. Considering this structural ‘lim-
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itation’, functional diversity has to be generated by adopting an existing structural

scaffold to a particular function. Functional changes within the same structural fold

is often related to critical local sequence changes Todd et al. (2001); Aloy et al.

(2001), and in difficult cases may be traced to differences of a few critical atoms.

An overview about the relationships between sequence, structure, function and

evolution is given by Orengo et al. (1999); Thornton et al. (1999, 2000). Generally

protein structure is more conserved than its function (and its sequence).

1.4.2 Examples for protein structure/function relationships

Glycogen synthase kinase 3β

The recently published structure of the glycogen synthase kinase 3β (GSK3β, Dajani

et al. (2001)) is represented as an example of how protein structure reveals insight

into biochemical function, supporting and guiding functional studies. The GSK3β

plays a regulatory role in two distinct signalling pathways, the insulin induced sig-

nalling pathway to regulate glycogen synthesis and the Wnt (Wintbeutel) signalling

pathway involved in cell proliferation and development. The default for GSK3β is

to phosphorylate and thereby inhibit its target proteins.

GSK-3β contains an N-terminal activation segment that is also found in other

kinases such as ERK2 MAP kinase (Zhang et al., 1995), forming a β barrel structure

that opens a substrate specific binding cleft and positions the active site residues

for the phosphorylation reaction. This activation itself is enhanced by the phospho-

rylation of the activation segment (tyrosine 216 in GSK-3β). A feature specific for

GSK3β is the P+4 phosphorylation pattern. The kinase efficiently phosphorylates

substrates at a position with a serine or threonine if the residue 4 positions towards

the C-terminus has already been phosphorylated (primed phosphorylation). Addi-

tional serine or threonine residues can be phosphorylate in +4 steps in a C-terminal

to N-terminal direction (hyper-phosphorylation, Fiol et al. (1994)).

The crystal structure was analysed to suggests a model by which the requirement

for primed phosphorylation and the substrate specificity is explained. The structure

of GSK3β shows the active from of the protein, with an open cleft between the

activation segment at the N-terminus and the C-terminal domain. Figure 1.8 (A)

shows the surface of GSK3β with the functionally key residues labelled. The cleft
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from the positively charged patch formed by R96, R80 and K205 to the left, passing

the active site residues R220 and D181, is the substrate binding site. The positively

charged patch is stabilised by either a phosphorylated tyrosine at position 216 form-

ing a hydrogen bonding network with the three positively charged residues or by a

free phosphate or sulphate from the surrounding buffer in vitro (as it is found in the

crystal structure) and the cytosol in vivo. The modelled protein substrate complex

in 1.8 (B) explains the requirement for P+4 primed substrates, and the specificity

for substrates containing a serine or threonine at ‘P(0)’ and ‘P(+4)’.

A B

Figure 1.8: GSK3β surface and active site. From Dajani et al. (2001), figures 3a and 4a.
(A) The solvent-accessible surface of GSK3β coloured according to electrostatic potential (red,
negative, blue: positive). The intensive positive patch generated by the basic side chains of Arg
96, Arg 180 and Lys 205 is indicated, as is the location of the catalytic Asp 181 and Arg 220 which
could interact with a phosphorylated Tyr 216. The N-terminal mainly neutral activation segment

is located towards the bottom of figure. (B) Phospho-Substrate bind model. Model of substrate
binding (peptide sequence PPSPSLS) to GSK3β. Phosphorylation of a serine at P(0) by the active
site residues (red) depends on a ‘priming’ phospho-serine at P(+4) interacting with residues of
the positively charged patch (blue sidechains) shown in (A) fitting the substrate into the binding
pocket.

The authors further suggest an autoinhibition mechanism to interpret the inhibi-

tion of GSK3β when serine 9 is phosphorylated in the insulin pathway (Cross et al.,

1995). The 35 residue N-terminal peptide, which is distorted in the crystal structure

and therefore not visible, was modelled into the substrate binding site serving as a

pseudo primed substrate analogue with the phosphorylated serine 9 as ‘P(+4)’ and
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a proline 5 in ‘P(0)’ occupying the pocket at the catalytic residues. The authors

showed experimentally that inhibition depends on the sequence context of the serine

9, and is in fact specific to the sequence N-terminal fragment of GSK3β itself.

The structure of GSK3β from Dajani et al. (2001) does not reveal any insights

into how GSK3β acts differently in the two signalling pathways (insulin and Wnt).

However, recently a structure of a complex between GSK3β and a peptide from

an interacting regulatory protein required in the Wnt pathway was published (Bax

et al., 2001), showing that the interaction site is close to the substrate binding site

but without any overlap. This structural complex explains why GSK-3β can be

inhibited in the Wnt pathway while staying active in the insulin pathway.

Similar structure and function - different sequence

As figure 1.6 shows and is further discussed in section 1.4.3 below, similar sequences

generally have a similar 3D-structure which in turn determines the biochemical func-

tion of the protein, although, as explained in section 1.4.1, it is not straightforward

to identify these relationships. In this section two protein structures with such a

difficult relationship are discussed.

The structures of the core domain from different viral integrase proteins Dyda

et al. (1994) are similar to ribonuclease H (RNaseH, Katayanagi et al. (1990); Davies

et al. (1991)), but their sequences do not show significant similarity (Yang & Steitz,

1995; Dyda et al., 1994). The integrase inserts the viral DNA into the host DNA,

whereas RNaseH hydrolyses RNA strands of RNA-DNA hybrids. Despite the differ-

ence of their biological function, both enzymes perform a similar trans-esterifiaction

reaction that requires either Mg2+ or Mn2+ ions and three carboxylates. Overall

the reaction mechanism of both enzymes has been proposed to be similar Yang &

Steitz (1995).

The topology of the core folds for the integrase and the RNaseH are the same,

but the length and twist of the secondary structure elements are different, also both

folds contain additional secondary structure elements. Figure 1.9 shows a superpo-

sition of both structures. The three residues of the catalytic site that provide the

carboxylates for the chelated metal-ion are in similar relative positions (coloured in

magenta and green). In integrase glutamate 157 (magenta) does not interact di-
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rectly with the magnesium-ion, although mutagenesis has shown that this position

requires a glutamate (Kulkosky et al., 1992). Further, glutamate 157 is in an oppo-

site position relative to glutamate 48 of the RNaseH. It has to be pointed out that

the fold of the Avian Sarcoma Virus (ASV) integrase shown in the figure is similar

to the HIV-1 integrase (Bujacz et al., 1996) with a sequence identity of 24% but the

relative orientation of the three active site residues are different (Bujacz et al., 1996).

A B

Figure 1.9: Superposition of ribonuclease H from E. coli (PDB code 1RDD, red structure,
Katayanagi et al. (1993)) and integrase from Avian Sarcoma virus (PDB code 1VSD, structure
shown in blue, Bujacz et al. (1996)). (A) The RMSD of the superposition is 3.9Å. Most similarity
is found in the 5 stranded sheet, both structures contain additional secondary structure elements,
although their general topology is the same. (B) Mg2+ binding site of both enzymes (integrase
in magenta, and RNaseH in green). The two aspartates occupy similar positions whereas the two
glutamates are on opposite sites of the metal ion.

The similarity between both protein domains and the proposal of a common

enzymatic mechanism was identified only because their 3D-structures are available,

pointing out the limitations of sequence based comparisons, and raising the question

of how many of these hidden relationships there are in the protein universe.
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Similar sequence and structure - different function

The sequence and structure of lysozyme and α-lactalbumin are very similar (36%

sequence identity and an RMSD of 1.3Å between the structures, see figure 1.10), al-

though their biochemical functions are different. The first 3D-structure of lysozyme

was described by Blake et al. (1965), and was derived from Hen egg. Lysozyme is also

found in other birds, mammals and insects Jolles et al. (1984). It degrades bacte-

rial cell walls by cleaving the β-1,4 glycosidic linkage between N-acetylmuramic acid

and N-acetylglucosamine of polysaccharides. α-lactalbumin is mainly found in mam-

mary glands and milk. The protein changes the substrate specificity of the enzyme

galactosyltransferase in the lactating mammary gland from N-acetylglucosamine to

glucose to produce lactose. The first α-lactalbumin structure was published by

Phillips and co-workers (Smith et al., 1987). A review about the discovery, analy-

sis and comparison of α-lactalbumin and lysozyme is given by McKenzie & White

(1991).

In addition to their sequence and structural similarity, both enzymes have a

similar exon-intron structure (McKenzie, 1996) suggesting a common ancestor. The

different biochemical functions, despite different substrates, are rendered by two

major features: (i) α-lactalbumin binds calcium, whereas only a few lysozymes have

been reported to bind calcium (e.g. Nitta et al. (1988); Nitta (2002)), and (ii) α-

lactalbumin interacts with galactosyltransferase, this interaction has not been found

for lysozymes. Figure 1.10 shows a structural superposition of both proteins, high-

lighting the calcium binding site of α-lactalbumin (red) and the catalytic residues

the lysozyme (blue).

Although α-lactalbumin and lysozyme have developed different functions, it is

commonly accepted that they are homologous. However, it is not clear when in

evolution the gene duplication event took place (lysozyme is believed to be the

ancestor of α-lactalbumin). Some authors suggest the event happened before the

divergence of birds and mammals (Prager & Wilson, 1988) while others suggest a

more recent event, after birds and mammals have diverged (Shewale et al., 1984).

The functional divergence of both proteins cannot be explained by structural data

alone, but needs careful sequence analysis and experimental work. Similar sequences

and structures do not necessarily imply similar function. This is an important aspect

in functional genome annotation which was discussed in section 1.4.1.
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Figure 1.10: Superposition of lysozyme (PDB code 1LYZ, blue, Diamond (1974)) and α-
lactalbumin (PDB code 1ALC, red, Acharya et al. (1989)). The catalytic sidechains ASP52 and
GLU35 of lysozyme are shown. The calcium (red sphere) and the sidechains of the residues LYS79,
ASP82, ASP87 and ASP88 involved in calcium binding are shown in red.

1.4.3 Structural genomics projects

Automated large scale structural genomics projects have been setup around the

world to determine large numbers of protein structures (Sanchez et al., 2000). There

are at least fifteen such projects in North America, four in Europe using X-ray crys-

tallography and one in Japan that uses NMR technology. Generally the aim of

structural genomics projects is to solve protein structures without the focus on a

particular protein. Targets may be selected carefully including those of special inter-

est such as potential drug targets, protein families or a representative set of proteins

from a particular organism. An important aspect is to have a wide range of pos-

sible protein targets so that a protein that is difficult to express or to crystallise

may be skipped or suspended from the processing pipeline without having any im-

pact on the entire project. This philosophy which is often referred to as grabbing

for the low hanging fruit aims for the easy targets. However, the current lack of

protein structures supports this point of view, and advances in technology based

on the experience of ongoing projects may allow future exploration of targets that

cannot be handled at this time. Nevertheless, there are projects such as the one at

the Midwest Center For Structural Genomics, that include difficult targets such as

membrane proteins.

As mentioned at the beginning of section 1.4, there is a large discrepancy between
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the number of available sequences and structures. However, structural genomics

projects do not need to provide experimental structures for every single sequence,

because the number of distinct 3D-architectures for globular proteins is limited to

a relatively small number of folds, allowing the modelling of the structures of many

proteins from a limited number of homologues for which the structures were deter-

mined experimentally.

Recent work by Vitkup et al. (2001) suggests that a number of 16,000 structures

may be required to have representative structures for 90% of all proteins. To cover

90% of all protein families in PFAM (version 4.4 with 2,000 families, see section

1.2.3) about 4,000 structure determinations are required. More than one structure

per family has to be solved if the sequence identity between members of a family

is low (< 30%). Assuming that reliable homology based model building for protein

structures requires at least 30% sequence identity between the target (the protein

of unknown structure) and the template (the homologue of known structure), one

could model all members of a protein family with a minimum number of template

structures. This minimum number is determined so that all members of the family

share at least 30% sequence identity to at least one template. On average a quarter

of a genome is covered by PFAM (version 4.4), and so the extrapolated number of

structure determinations rises to 16,000. This is the estimated number of protein

structures to cover 90% of the sequence space. About 10% of these structures are

already available. Targeting a 100% coverage of the protein sequence space requires

four times more protein structures to be solved, and therefore a 90% coverage cut-off

is a good ratio of completeness to costs. This theoretical estimate does not consider

membrane proteins and technical difficulties with certain protein families, although

difficulties with individual target proteins from families can be bypassed by choos-

ing an alternative candidate target protein of the same family (e.g. from a different

organism).

Target selection is critical for the success of structural genomics and has to

be coordinated to avoid redundant work. Lists of targets from various projects

are maintained at http://presage.berkeley.edu/ (Brenner et al., 1999) and http://-

www.structuralgenomics.org.

The expected benefits from having a large set of available structures (includ-

ing those derived from homology modelling, see section 1.4.5) are combinations of

http://presage.berkeley.edu/
http://www.structuralgenomics.org/
http://www.structuralgenomics.org/
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‘new/old’ folds (3D-architectures) and ‘known/unknown’ functions (Burley, 2000).

The examples in 1.4.2 already highlighted the benefits of knowing the structure of

a protein. Structures will be used for guiding experimental work such as site di-

rected mutagenesis, protein-protein interaction studies and identification of possible

ligands (e.g. inhibitors). Having a larger number of proteins with the same or a

similar fold but different function sheds light into the evolutionary history of a fold.

This allows the exploration of the differences between proteins that have diverged

from a common ancestor, and how proteins with the same structural scaffold evolved

new functions. As discussed in section 1.4.1, the structure/function relationship is

complex, and there is still a lack of structural data to extract reliable rules for this

relationship. New folds of proteins with known function will allow to elucidate the

function of a fold, which in turn may allow to propose a function for all those mem-

bers (proteins) of this fold. For a known fold with an unknown function the structure

may be used to propose a function, e.g. by screening this fold for 3D-sites extracted

from existing structures (Wallace et al., 1997; Russell, 1998; Jonassen et al., 1999).

1.4.4 Structure based classification of proteins

The protein family and domain databases discussed in section 1.2.3 derive their rel-

evant information to cluster proteins mainly from sequence information. Another

type of domain database uses protein structure to identify and cluster similar do-

mains. Protein structure supports the identification of domain boundaries for a

sequence family. A comparison of protein structures also allows the identification

of structurally similar domains in the absence of obvious sequence similarity as the

structural similarity of the integrase and the ribonuclease in section 1.4.2 shows.

The most commonly used structural domain databases are SCOP (Murzin et al.

(1995); Conte et al. (2002), see also http://scop.mrc-lmb.cam.ac.uk/scop/) and

CATH (Orengo et al. (1997); Pearl et al. (2001), see also http://www.biochem.-

ucl.ac.uk/bsm/cath/). Both databases are based on the PDB database which is

the central repository for protein structures. SCOP (Structural Classification Of

Proteins) has been employed extensively in this work, and therefore its architecture

is described in detail. Proteins are classified via a tree with six branch levels. The

top level is the class that summarises domains according to their secondary struc-

ture content. In SCOP version 1.53 there are five main classes, all-α, all-β, mixed

α/β and α + β (domains contain a separated α and β part) and small domains

http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.biochem.ucl.ac.uk/bsm/cath/
http://www.biochem.ucl.ac.uk/bsm/cath/
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(dominated by short domains that usually contain a complexed metal or disulphide

bridges). The next level is the fold, that groups domains for which the secondary

structure elements are arranged in a similar topology but without the need of se-

quence similarity. Each fold contains one or more superfamilies which aims to group

domains for which the evidence suggests there is be a common ancestor, therefore

members of the same superfamily are homologues. The evidence that two domains

belong to the same superfamily can be similarity in sequence, structure and function,

but may be a combination of similar structure and function without detectable se-

quence similarity (as for the integrase and ribonuclease H examples in section 1.4.2).

Domains in the same fold but from different superfamilies are considered to be ana-

logues, their similar structural framework is believed to have evolved independently.

Since the discrimination between analogy and homology is not straightforward, a

common evolutionary origin cannot be excluded for some domains within the same

fold but in different superfamilies. SCOP decides conservatively, and places domains

without clear evidence for common ancestry in different superfamilies. Each super-

family contains at least one family that groups closely related domains with at least

30% sequence identity or in some cases less identity but very similar structures and

function. A domain itself is the next level within a family, followed by the species,

i.e. the same domain may be present in different species. The SCOP database is con-

structed and maintained mainly manually, some steps of the analysis are automated.

CLASS

FOLD

SUPERFAMILY

FAMILY

PROTEIN DOMAIN

PROTEIN DOMAIN AND SPECIES

11

657

971

1472

2804

1512

Figure 1.11: The SCOP classification. The CLASS level at the top of the triangle is the most
general classification level. Several entries from a level can be summarised by the next higher level
(e.g. a FOLD contains one ore more SUPERFAMILIES). The lowest level is the PROTEIN DOMAIN IN A

SPECIES, i.e. the same domain may be found in different species. The numbers of distinct entries
at each level are given, in total there are 26,174 domains (including the same domain in different
species) in SCOP version 1.53

The CATH database is organised similarly to SCOP, it contains five levels: (i) the
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class, similar to SCOP, and contains the entities mainly-α, mainly-β and α − beta,

(ii) the architecture level groups domains with similar arrangements of secondary

structure elements but ignoring their connectivity, (iii) the topology/fold family level

that considers secondary structure topology (grouping analogues), (iv) the homolo-

gous superfamily and (v) the sequence family levels for similar sequences. CATH is

constructed and maintained mainly automatically with some manual intervention.

1.4.5 Methods for assigning a 3D-structure to protein se-

quence

The previous sections have demonstrated the benefit of protein structure for the un-

derstanding of function and evolutionary relationships. Clear homologous relation-

ships between sequences can be identified straightforward via sequence comparison

e.g. using BLAST (see section 1.3.3). Thus way one can identify a close homologue

of known structure for a sequence of unknown structure. However, because the

structure is usually more conserved than the sequence, and similar structures of-

ten share a broad similar biochemical function (see section 1.4.1), different methods

have been developed to make use of the knowledge that is derived from structure,

such as physical interactions between residues distantly apart in the sequence. The

aim is not only to detect distant homologous relationships but also those for which

the structures share similar physical constraints which may have arisen by con-

vergent evolution. These methods are generally summarised as fold recognition or

threading1, and were reviewed by Jones (1997); Sippl (1999); Sternberg et al. (1999).

One of the earliest fold recognition methods compares a template sequence with

a library of profiles from proteins of known structure (Bowie et al., 1991). The pro-

files contain observed secondary structure states and solvent accessibility for each

residue position. A statistical analysis of all 20 amino acids with their states is

performed for all proteins of known structure, calculating a score for each amino

acid type in each state, which is used to score each residue of a target sequence in

the templates residues states.

One of the most successful methods developed was THREADER (Jones et al.,

1992) which uses pair-potentials to evaluate an energy function for the target residues

1Threading in this context means to thread the residues of a sequence of unknown structure
onto the backbone conformation of a template structure
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in a template structure. Pair-potentials introduced by Sippl (1990); Hendlich et al.

(1990) are derived by analysing the surrounding residues in a given radius in space

for a given residue. This is a measure for the preferred amino acid environment for

a given residue.

Advances in secondary structure predictions based on multiple sequence align-

ments and neural networks (Rost & Sander, 1993b,a; Jones, 1999b) enhanced fold

recognition (similar 3D-structures have the a similar secondary structure content

and topologies) and were frequently incorporated into fold recognition methods.

In the 4th CASP competition (Critical Assessment of Structure Prediction) in

2000, a blind trial to predict the fold of structures that were held back temporar-

ily from publication for the purpose of CASP, the 3D-PSSM method performed

best under the fully automated methods (Kelley et al., 2000). Different methods

are combined to score the compatibility of a target sequence with each library se-

quence represented by a set of profiles that are derived from superimposed structures,

solvent-potentials, secondary structure prediction and sequence homology.

If more information than just the general fold is required and a homologue of

known structure is available, homology based modelling can be applied to build an

accurate structural model that includes sidechains. The assumption for homology

modelling is that the target sequence will have a similar fold, and therefore a similar

backbone conformation for the main secondary structure elements. The backbone

conformation of the homologue of known structure is used as a template onto which

the sidechains of the target are placed. The model may be refined using different

force fields (e.g. Sali & Blundell (1993); Sanchez & Sali (1997b)), see Sanchez &

Sali (1997a); Moult (1999) for a review on comparative modelling. Flexible loops

and gaps are difficult to model, and special methods have been developed to tackle

this problem (Bates et al., 1997). The quality of homology models strongly depends

on the accuracy of the alignment between the target and the template. Reasonable

models that include sidechains and flexible loops require at least 30% sequence

identity (Sanchez & Sali, 1998; Bates et al., 1997; Fischer et al., 1999). Structural

genomics projects benefit from the conservation of protein structure by building

reliable models for closely related sequences (see section 1.4.3 on page 53). The

growth of the sequence database and the expected growth of the protein structure

database will increase the number of relationships with >30% sequence identity,
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increasing template selection via straightforward sequence search methods such as

BLAST.

1.5 Scope and outline of this thesis

The methods used in genome annotation as described in the previous sections to-

gether with the vast amount of data that is already available requires a systematic

integration. To perform comparisons across genomes, a unified annotation protocol

has to be applied to all sequences of each genome. Such a cross-genome comparison

highlights the differences shaping the nature of a particular organism or a group of

organisms (e.g. metazoans). Commonalities between genomes reveal evolutionary

relationships as well as conserved functions. Several comparative genomics projects

with different aims have been developed by others which are discussed in the later

chapters and are compared to this work. Here, a comparative annotation system

and its application based on the protein repertoire of fully sequenced genomes is

described with a focus on domains of known structure. Below the main aspects of

this work are introduced.

• Chapter II describes the development of a benchmark for the protein sequence

database search program PSI-BLAST (see section 1.3.5) to evaluate its perfor-

mance in protein based genome annotation. For the benchmark an artificial

genome is constructed from domains of the SCOP database (for which the an-

notation is known, see section 1.4.4), so that the ideal structural and functional

annotation can be compared to PSI-BLAST results. The well characterised

genome of M. genitalium and the genome of M. tuberculosis (at that time just

published) are annotated via PSI-BLAST sequence comparisons. The extent

of new folds and proteins of potentially new function within these genomes is

estimated.

• Chapter III describes the development of a computer based annotation sys-

tem that is capable of performing an automated analysis of a vast amount of

protein sequences with structured storage and retrieval of the results. The

annotation system is based on a relational database and an object oriented

software interface to this database. Standard protein sequence based analysis

tools such as those described in the previous sections (e.g. PSI-BLAST) are

integrated as a part of the annotation pipeline.
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• Chapter IV analyses the proteins of 14 genomes from archae, bacteria and

eukaryota including proteins from the draft human genome. The extent of

structural and functional annotation within these genomes is analysed and

compared. The extent of domain duplications within SCOP superfamilies

in the processed proteomes is analysed, including a comparison of the most

abundant superfamilies, repetitiveness of domains and the co-occurrence of su-

perfamilies in the same sequence. Membrane proteins are analysed for globular

domains, and SCOP superfamilies found in membrane proteins are compared

across the proteomes. Further, SCOP superfamilies found in proteins from

human disease genes are compared to those found in non-disease genes. Re-

sults from other projects that analyse the fold distribution across different

proteomes are discussed.

• The thesis closes with a summary and discussion of the results and suggestions

for possible future developments, in particular possibilities for the annotation

and analysis system described in this work.
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Chapter 2

Benchmarking PSI-BLAST in

genome annotation

2.1 Summary

The recognition of remote protein homologies is a major aspect of the

structural and functional annotation of newly determined genomes. This

work presents a benchmark for the coverage and error rate of genome an-

notation using the widely-used homology-searching program PSI-BLAST

(position specific iterated basic alignment tool). The study evaluates the

one-to-many success rate for recognition, as often there are several homo-

logues in the database and only one needs to be identified for annotating

the sequence. In contrast, previous benchmarks considered one-to-one

recognition in which is was required that a single query should find a par-

ticular target. The benchmark constructs a model genome from the full

sequences of the structural classification of protein (SCOP) database and

searches against a target library of remote homologous domains (<20%

identity). The structural benchmark provides a reliable list of correct and

false homology assignments. PSI-BLAST successfully annotated 40% of

the domains in the model genome that had at least one remote homologue

in the target library. This coverage is more than three times that ob-

tained if one-to-one recognition is evaluated (11% coverage of domains).

Although a structural benchmark was used, the results equally apply to

just sequence homology searches. Accordingly, structural and sequence

assignments were made to the sequences of Mycoplasma genitalium and
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Mycobacterium tuberculosis (see http://www.bmm.icnet.uk/PsiBench).

The extent of missed assignments and of new superfamilies can be esti-

mated for these genomes for both structural and functional annotations.

The work described in this chapter has been published in Journal of

Molecular Biology (Muller et al., 1999).

2.2 Introduction

At the start of this work in 1998 it was clear that over the next few years a ma-

jor activity in molecular biology would be the assignment of protein structure and

function to ORFs in newly determined genomes (Bork et al., 1998; Bork & Koonin,

1998). A standard approach is to perform database searches to identify homologous

protein sequences which will have similar three-dimensional structures and often a

related function (Bork & Koonin, 1998; Chothia & Lesk, 1986; Hegyi & Gerstein,

1999; Karp, 1998; Martin et al., 1998). Indeed an initial report of a newly deter-

mined genome nearly always reports the results of homology searches. However,

despite the importance of the methodology, there has only been limited systematic

evaluation of the accuracy, both in terms of coverage and errors, of the procedure

(Brenner et al., 1998; Park et al., 1998). This work uses a structural benchmark

developed by Chothia and coworkers (Brenner et al., 1998; Park et al., 1998) from

the SCOP (Structural Classification of Proteins) database (Murzin et al., 1995) to

assess the accuracy of homology based annotation1 of ORFs. The results of the

benchmarking will be used to interpret assignments of protein structures to ORFs

in two bacterial genomes. Although a structural benchmark is used, the conclusions

of the study relate to the accuracy of genome annotation by homology to other pro-

teins irrespective of whether these proteins have a determined structure.

The SCOP database employs sequence, structural and functional relationships

between protein domains of experimentally determined three dimensional confor-

mation (Murzin et al. (1995), see section 1.4.4 for details); In summary: protein

domains of similar three-dimensional structure are classified into the same super-

family if there is substantial evidence to propose that they are homologues (i.e. the

result of divergent evolution). A key feature is that without structural information,

1Here, annotation is defined as the assignment of a functionally or structurally characterised
homologue to an uncharacterised protein sequence

http://www.bmm.icnet.uk/discretionary {-}{}{}PsiBench
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many homologous relationships between proteins in the same superfamily could not

have been established. Domains that lack strong evidence for divergence but share

a common structure are assigned to the same fold family. In general, domains with

a common fold are presumed to be structural analogues (i.e. the result of conver-

gence) but a homologous relationship remains a possible explanation.

Chothia and coworkers established a structural benchmark for sequence ho-

mology search algorithms based on recognising superfamily relationships in SCOP

(Brenner et al., 1998; Park et al., 1998). A database of sequences with less than 40%

identity was derived from SCOP. An optimal homology algorithm should identify

all pairs of sequences for domains within the same superfamily (i.e. total coverage)

without detecting any erroneous relationships between different superfamilies (i.e.

zero errors per query). In practice, algorithms are not optimal and different methods

can be compared from their different coverage at a chosen observed error rate. Park

et al. (1998) showed that the iterative profile approach of PSI-BLAST (Altschul

et al., 1997) and the hidden Markov models implemented in SAMT98 (Karplus

et al., 1998) were found to identify three times as many remote homologues as the

sensitive pairwise algorithm FASTA (ktup=1) (Pearson & Lipman, 1988).

The evaluations of the accuracy of different homology search algorithms by

Chothia and coworkers (Brenner et al., 1998; Park et al., 1998) and the related

studies by Salamov et al. (1999), evaluate a one-to-one success rate in terms of

whether a single probe identifies a particular homologue in the library (see table

2.1). This measure, appropriate for comparison of the performances of different al-

gorithms, is not the most useful to benchmark actual genome assignment. A better

measure for genome annotation is the one-to-many success rate as there are several

potential homologues in a database and only one needs to be identified to propose

a common three-dimensional structure and probable related function. One would

expect that the presence of multiple homologues would increase the accuracy of ge-

nome assignment for populated homologous families. In addition, these previous

benchmarks considered recognition of protein domain probes and targets whilst of-

ten the actual genome will be a multi-domain protein. Not only could this lead

to additional problems in assignment, but it also raises the question of how well

domain boundaries can be identified.

It is important therefore that the benchmark for genome assignment represents
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Probe Targets Found< e-

value

one-to-one success one-to-many suc-

cess

A B
√

1 1

C
√

1

D X 0

B A
√

1 1

C X 0

D X 0

C A
√

1 1

B X 0

D X 0

D A X 0 0

B X 0

C X 0

TOTAL SUCCESS RATE 4/12 3/4

Table 2.1: One-to-one and one-to-many assignment Sequences A, B, C and D are homologues
(i.e. the same SCOP superfamily). In a benchmark, each sequence would be taken as probes in
turn and their success at identifying the remaining target homologues determined (i.e. ‘Found <

e-value’). In a one-to-one benchmark the success of finding each pair is considered. In one-to-many
only one correct assignment is needed to classify the probe. This highlights the difference in the
two methods of assignment. In the approach of Brenner et al. (1998) and Park et al. (1998), the
observed error rate is evaluated and is the basis for comparison of algorithms (see text).

the actual situation. Accordingly, in this work a model genome (the SCOP genome)

is constructed from a selection of the entire protein sequences forming protein do-

mains in SCOP. The performance of PSI-BLAST for genome assignment will be

evaluated since this program is exceptionally widely-used and can be readily in-

stalled at any site (see e.g. Aravind & Koonin (1999); Koehl & Levitt (1999);

Sternberg et al. (1999)). Indeed, today, PSI-BLAST is the standard tool for an

initial, state-of-the-art analysis of newly determined genomes. The results of the

benchmark are then used to interpret the PSI-BLAST analysis of the fold composi-

tion in the Mycoplasma genitalium and Mycobacterium tuberculosis genomes.

2.3 Development of the SCOP genome benchmark

For details of the materials and methods, see section 2.7 on page 80.
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2.3.1 SCOP1625 - representative target domain library

Structural information was taken from SCOP release 1.37 (Murzin et al., 1995).

Each SCOP entry consists of a structural domain. These domains can be contin-

uous or discontinuous (i.e. in which the same structural domain is formed from

two or more discontinuous sequence segments) (Wetlaufer, 1973). The unit used

in this study is referred to as a ‘region’ which is defined as one domain or a seg-

ment of a discontinuous domain and represents one segment of the protein sequence.

To generate a representative library2, SCOP entries have been excluded if they

did not have coordinates in the protein data bank (Abola et al., 1997; Berman et al.,

2000), any errors in residue numbering, an X-ray resolution of >3.5Å or undefined

residues, length <20 residues, Cα trace only, more than 15 Cα-Cα separations of

>4.0Å or more than five undefined residues. From 11,373 domains, a set of 1,560

domains was generated so no pair shared >40% identity. These domains contain

1,625 regions which is the SCOP1625 target library.

2.3.2 SCOP genome probe

The SCOP genome was constructed to have complete chain sequences. Any sequence

in SCOP1625 that was only part of a chain was replaced by the entire chain sequence.

This yielded 1,300 different sequences comprising 934 single domain chains and 366

multi domain chains. The sequences are from a range of different organisms. The

SCOP query genome contained 1,845 regions. In this genome there are 224 regions

that cannot be annotated (i.e. these are the only representatives for a SCOP super-

family), and this provides a model for the types of errors that can occur in actual

genome assignment when there are no homologues in the database. For example,

the identification of domain boundaries may be subject to more errors if there are no

homologues for parts of a protein. However the SCOP genome is limited as it only

includes a few transmembrane and coiled-coiled domains, and real genomes tend to

have a higher fraction of these types of structures.

2This library was created by R.M. MacCallum
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2.3.3 Assignment of structural regions to the SCOP genome

In outline (see section 2.7 for details), PSI-BLAST (Altschul et al., 1997) performs

iterative searches against a non redundant sequence database (NRPROT-SCOP)

that includes every non identical representative from the standard sequence databa-

ses together with the sequences of all the regions in SCOP1625. The benchmark is

to evaluate the accuracy and coverage of detecting remote homologues to the SCOP

genome.

In PSI-BLAST, the confidence in a particular sequence hit to the query is quan-

tified by an e-value that indicates the theoretically expected number of erroneous

matches per query (also see section 1.3.4). Up to 20 iterations of PSI-BLAST were

performed and all hits to SCOP1625 from any iterations are stored. For hits to the

same region within query, the one with the best (lowest) e-value is taken. Hits that

overlap within a similar region in the SCOP protein are clustered. Two parameters

determine which match is taken as the assignment. First the percentage of the tar-

get (i.e. known) SCOP region that is included in the PSI-BLAST match must be

greater than a cut-off value t. Thus one can exclude a match to a small fraction

of the target that may be erroneous. After this, the match with the best e-value is

taken.

For the benchmark only matches to remote homologues are considered. Here 20%

identity for long alignments (>350 residues) is used to distinguish between close and

remote homologues with a progressively higher identity required for shorter align-

ments based on the relationship derived by Rost (1999).

The proposed annotation generated using PSI-BLAST is then compared to the

real assignment of the query. This is performed by associating the mid point of each

proposed region with its nearest mid point of the real region of the query. If the

SCOP superfamily of the real and proposed region is the same, then this is a correct

assignment. If there are more proposed regions than real regions in the query, one

or more of the proposed regions are flagged as ‘over-assignments’ in the benchmark.
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2.3.4 Accuracy measures

The accuracy of genome assignment can be considered in terms of two measures:

coverage and the error rate. The coverage of true positives is the number of correctly

assigned regions divided by the number of regions in the SCOP genome that have a

homologue (1621). The assignment of a target to a region within the query that is

from a different superfamily than the target is defined as a false positive. The error

rate is the number of false positive assignments divided by the number of SCOP

query regions (1845).

A correct assignment is when a region in the SCOP genome is matched by PSI-

BLAST to a target region of the same SCOP superfamily. Sequence based profile

methods can detect analogous folds in addition to homologues (Fischer et al., 1999)

which would lead to erroneous functional assignments (although members of a di-

verse superfamily can have different function). Thus, in our study assignment to

the same SCOP fold but different superfamily is taken as an incorrect result. How-

ever, the SCOP classification of domains into the same superfamily is conservative.

In preliminary work, several errors occurred when there was an assignment to the

correct fold but the wrong superfamily for a β/α TIM-barrel. This suggested that

the SCOP classification was too conservative for these superfamilies. Accordingly,

any correct assignment to the TIM-barrel fold irrespective of superfamily is taken

as correct. In addition, any assignment between a nucleotide-binding domain and a

FAD/NAD(P)-binding domain (two different SCOP folds) is not treated as an error.

In the benchmark, there were four such assignments to different superfamilies for

TIM barrels and four for nucleotide-/FAD/NAD(P)-binding domains.

2.3.5 Parameter selection

First suitable parameters for the percentage t of the target that needs to be iden-

tified by PSI-BLAST and the standard e-value cut-off were determined. Figure 2.1

plots the coverage and error rate against different t-values for three different e-value

cut-offs (5 × 10−6 , 5 × 10−4 and 5 × 10−2). When the t cut-off is above 50%, the

coverage begins to decrease markedly. In contrast, errors tend to accumulate when t

is less than 50%. Accordingly we chose a value of t of 50% as optimal. A commonly

used PSI-BLAST e-value of 5×10−4 (i.e. 0.05%) yields an observed error rate in our

final assignment of 0.9%. Note that the PSI-BLAST e-value relates to the estimated
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error rate from a single iteration. The observed error rate is the result of several

iterations and the subsequent structural assignment that includes a length require-

ment. The benchmark therefore provides an estimate of the relationship between a

PSI-BLAST e-value and the resultant error rate in genome annotation.
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Figure 2.1: Coverage and errors for genome assignment for different parameters. The graphs show
the percent coverage of true positive matches divided by the total number of possible assignments
(left ordinate and filled symbols) and the error rate per query region (right ordinate and open
symbols). These values are plotted for the different percentages of the target domain region
included in the alignment and at different e-values

2.4 Results of the SCOP genome benchmark

2.4.1 Assignment coverage

Table 2.2 presents the results of the evaluation of the accuracy of genome assignment

at the PSI-BLAST e-value of 5 × 10−4. To recapture, the 1,300 sequences in the

SCOP genome contained 1,845 regions (domain segments, see section 2.3.2). There

were 1,254 sequences that had at least one potential remote homologue in the target

database. There were 1,621 query regions that could be assigned and PSI-BLAST

correctly identified 652 of these regions. Thus the percent coverage for assigning
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remote homologues (<20% identity) in the model genome is 40%. There were 16

false positive assignments and two over-assignment (see below). Table 2.2 also gives

the results of genome assignment in terms of sequences with at least one region

recognised, and with this measure the percent coverage remains at 40%. However,

on a per residue basis the percentage coverage falls to 32%. This lower coverage is

due to alignments not including the complete query sequence but still having the

correct assignment.

Sequences Regions Residues

No. in SCOP genome 1,300 1,845 299,910

No. with at least one region that

can be assigned

1,254 1,621 263,863

No. correctly assigned 503 652 84,827

Coverage of correct assignment 40% 40% 32%

No. of false positive assignments 13 16 1,985

No. of over assignments 2 2 163

Table 2.2: Accuracy of genome assignment. Sequences refer to each chain, i.e. model ORFs;
region refers to a domain segment. For sequences, correctly assigned means that at least one
region has been correctly assigned (i.e. there is some correct information about the sequence)
irrespective of whether other regions are not assigned or have been erroneously characterised.
Similarly, errors for sequences are reported irrespective of whether another region in the sequence
has been correctly assigned.

An important aspect of genome assignment is that for many of the queries there

are several database homologues and only one needs to be identified to assign the

protein superfamily. The importance of this is demonstrated if the accuracy of one-

to-one assignment is evaluated. This corresponds to the benchmark used previously

(Brenner et al., 1998; Park et al., 1998; Salamov et al., 1999) when accuracy is

considered in terms of each query recognising a correct one-to-one relationship be-

tween database entry. In this study at the PSI-BLAST e-value of 5×10−4, there are

15,469 potential pairwise relationships between regions that could be identified (this

corresponds to the query-target space for a one-to-one evaluation) and only 1,671

(11%) were correctly assigned. Thus identification of remote homologues (<20%

identity) in structural genome analysis has 3.6 times more true positive coverage

than obtained in detecting pairwise relationships.
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Figure 2.2: Coverage plotted against observed error rates. The cumulative coverage and observed
error rate corresponding to different PSI-BLAST e-values are plotted for one-to-many and one-to-
one evaluations. The smallest e-value is 5× 10−60.

The above comparison of one-to-many and one-to-one coverage is made at a par-

ticular PSI-BLAST e-value. As demonstrated by Brenner et al. (1998) and Park

et al. (1998), comparisons of approaches should be performed by consideration of

plots of the coverage of true positives against the observed error rate. For each

approach, the cumulative coverage and observed error are plotted as the theoretical

error-rate from the approach increases. Figure 2.2 presents these plots for the one-

to-one and one-to-many assignments. At any observed error rate per query, there is

a several fold greater coverage in annotation via one-to-many compared to pairwise

recognition measured by one-to-one.

For each superfamily in the SCOP genome, the average percent coverage of su-

perfamily assignment from one-to-many recognition was calculated and then plotted

against the average number of cross-validated members in the superfamily (figure

2.3). One might expect that for one-to-many superfamily assignment (figure 2.3

(a)), there would be a tendency that the percent coverage would improve as the size

of the superfamily increases, but this is not observed. This is explained by figure 2.3

(b) which shows that the percent coverage for detecting remote one-to-one relation-

ships tends to decrease with increasing superfamily size. Some large superfamilies,
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such the immunoglobulins and the Rossmann fold, contain a diverse set of members

and even sensitive search methods such as PSI-BLAST have difficulty in detecting

many of the one-to-one relationships.

2.4.2 Length of region assignment

In the assignment of domain regions to multi-domain query sequences, there could be

substantial errors in delineating the domain boundaries. In this study for each region

in a multi-domain query the offset of the assigned location of the domain boundary

to that reported in SCOP has been evaluated. A perfect assignment would have

a zero offset. No offsets were calculated for the N- and the C-termini as these are

easier to determine. Figure 2.4 is a histogram of the frequency of each offset length.

65% of the domain boundaries are correctly determined to within 5 residues and

86% to within 20. This shows a high accuracy in automatically delineating domain

boundaries given that the query and the target are remote homologues.

Figure 2.4 is helpful in both theoretical and experimental studies to characterise

a sequence. For example, in structural studies in which the domain will be cloned

and expressed, it is helpful to know the likelihood of a domain boundary being cor-

rect.

2.4.3 Analysis of errors

There were 16 false positive classifications and two over-assignments where two re-

gions are assigned to a query protein that has only one continuous domain. It is

useful to examine these errors to identify commonly occurring problems.

Six classification errors are due to short cysteine rich regions, for example false

assignments between tumour necrosis factor receptor and EGF/Laminin superfami-

lies. The problem caused by cysteine rich regions has been noted previously (Huynen

et al., 1998; Park et al., 1998). Three of the errors are introduced by the algorithm

we used to identify the positions of regions in the query. For a query protein with a

discontinuous domain the target spans both of the two regions of the discontinuous

domain and the intervening one, consequently the target is erroneously assigned to

the intervening domain although the assignment to the flanking regions of the dis-
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Figure 2.3: Relationship between assignment accuracy and superfamily size. The percent cov-
erage of genome assignment (one-to-many) is plotted against the average number of members
in the cross-validated superfamily in the target library (a). Results for evaluation of one-to-one
assignment are shown in (b).

continuous domain was correct. PSI-BLAST did not produce two separate sequence

pairs but one long gapped one. If this gap is longer than 25 residues, a warning is

generated by the program developed for this analysis. This occurred 25 times, and
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(offset 56-230 = 3 %, not shown)
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Figure 2.4: Accuracy of domain identification. Histogram of the normalised frequency of the
offset error in domain identification. Offset is the number of residues error in the delineation of a
domain boundary. The N- and C- terminal boundaries of the full sequence are not included. The
diagram includes 97% of the observed offsets. The included scheme shows two possible errors when
assigning sequences to regions in a the query. Percentages below the arrows give the cumulative
frequency of offsets included.

three of these warnings correspond to these erroneous assignments. The presence of

long gaps provides a flag for possible errors.

The causes of the remaining errors are not obvious but several may be due to

the incorrect construction of the PSI-BLAST profile. These errors can be identified,

and accordingly all PSI-BLAST annotations in which more than one superfamily

was assigned to the same query segment were considered as these are conflicting

assignments. There were three occurrences of this, two correspond to an actual er-

roneous assignment. These two erroneous assignments were in two queries from the

same superfamily. Thus in the benchmark, conflicting superfamily assignments can

be used to indicate a potential error.
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2.5 Application to bacterial genomes

Structural annotation based on the SCOP1625 library was performed on two bac-

terial genome sequences. Firstly, this serves to relate the results from the model

SCOP genome to real genomes and thereby evaluate the usefulness of the bench-

mark. Secondly, structural assignments provide valuable insights into the function

and evolution of the organism.

In this work the Mycoplasma genitalium (MG) and Mycobacterium tuberculosis

(TB) genomes are considered. MG is a relatively small genome with 479 ORFs

and has been widely studied for structural annotation by several groups (Fischer

& Eisenberg, 1997; Huynen et al., 1998; Rychlewski et al., 1998; Teichmann et al.,

1998, 1999). In contrast, TB is far larger (3,924 ORFs) and has not been exten-

sively studied in terms of structural annotation3 (see Frishman et al. (2001), http://-

pedant.mips.biochem.mpg.de). Details of the assignments can be on our Web page,

see http://www.bmm.icnet.uk/PsiBench.

2.5.1 Structural annotation using SCOP1625

For the MG genome with 479 ORFs (174,566 residues) sequences of the SCOP1625

database are assigned to all or a part of 136 ORFs (28% of the ORFs). These 136

MG sequences represent 201 domains with 208 regions (21% of the residues). There

are 7 discontinuous domains with two regions each. Of the 208 regions, 88 (10% of

the residues) were assigned by close homologues (i.e. >20% identity based on the

Rost (1999) cut-off) whilst 120 regions (11%) are assigned via a remote homology.

The TB genome is 7.6 times larger than that of MG with 3,924 ORFs and

1,331,539 residues, and it is important to evaluate whether the structural assign-

ment is similar to that of MG. Of the 3,924 ORFs in TB, 1,079 could be assigned

completely or in part to a sequence in the SCOP1625 database (27% of the ORFs).

The assignments represent 1,566 domains with 1,639 regions (23% of the residues).

There are 73 discontinuous domains with 2 regions each. Of the 1,639 regions, 448

(7% of the residues) were assigned by close homologues and 1,191 regions (16% of the

residues) by remote homologues. Thus at the general level of structural assignment

3Between 1998 and 1999 when this study was carried out.

http://pedant.mips.biochem.mpg.de
http://pedant.mips.biochem.mpg.de
http://www.bmm.icnet.uk/PsiBench
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MG and TB are similar although there is a smaller percentage of close homologues

in TB than in MG.

When, however, the most commonly occurring superfamilies are considered there

are major differences between the two genomes (table 2.3). The most common su-

perfamily in MG is the P-loop nucleotide triphosphate hydrolase yet this occurs at

rank 10 with 36 matches in TB. In contrast the most common superfamily in TB is

the NAD(P)-binding Rossmann domain with 123 matches compared to its rank 11

with 3 matches in MG. The general observation is that certain superfamilies tend to

occur roughly a fixed number of times in the bacterial genomes irrespective of the

genome size (e.g. the class I amino acid (aa) -tRNA synthetases catalytic domain).

In contrast, other superfamilies such as the Rossmann fold undergo duplication and

diversification of function in the larger TB genome. Certain superfamilies were not

observed in MG but are common in TB. In particular, the thiolase superfamily oc-

curs at rank 4 in TB, probably due to its important role in fatty acid metabolism

which may be linked to the complex cell envelope rich in lipids. The acetyl-CoA de-

hydrogenase and luciferase like domains may also be linked to fatty acid metabolism

in TB and were not found in MG. The general observations about the frequencies

of superfamilies in these two genomes are in agreement with the pedant database

(Frishman et al. (2001), http://pedant.mips.biochem.mpg.de) although there are

differences in the exact numbers due to differences in the methodologies of assign-

ment.

Several other groups have analysed superfamily populations (Gerstein, 1997,

1998b; Gerstein & Levitt, 1997; Wolf et al., 1999; Teichmann et al., 1998, 1999).

Work by Teichmann et al. (1998) using PSI-BLAST first with the MG sequence and

then with the known structures as the queries (i.e. two-way PSI-BLAST) identified

more occurrences of the superfamilies in MG than obtained in this work. However,

the two studies give the same results for rank one and for the top five ranking su-

perfamilies. Thus the observations in this work about the relative populations of

superfamilies between MG and TB are likely to remain after adding the additional

hits obtained from two-way PSI-BLAST.

Teichmann et al. (1998) describe how the rate of domain duplication can be cal-

culated from the number of homologous domains in a genome. The basic assumption

is that all domains within the same superfamily have arisen via duplication from

http://pedant.mips.biochem.mpg.de
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Superfamiliy description
MG TB

rank freq rank freq

P-loop nucleotide triphosphate hydrolases 1 20 10 36

Class II aaRS and biotin synthetases 2 10 39 10

Nucleic acid-binding proteins 3 9 21 17

Class I aa-tRNA synthetases (RS), Catalytic domain 4 8 39 10

FAD/NAD(P)-binding domain 4 8 2 57

α/β-Hydrolases 6 4 3 53

Anticodon-binding domain of Class II aaRS 6 4 76 4

Thiamin-binding 6 4 13 26

Adenine nucleotide alpha hydrolases 6 4 65 5

Actin-like ATPase domain 6 4 31 12

NAD(P)-binding Rossmann domain 11 3 1 123

Thiolase - - 4 48

S-adenosyl-L-methionine-dependent Methyltransferases 11 3 5 43

Luciferase - - 5 43

TetR/NARL DNA-binding domain - - 7 42

Acyl-CoA dehydrogenase (flavoprotein), N-terminal and middle domains - - 8 39

Acyl-CoA dehydrogenase (flavoprotein), C-terminal domain - - 8 39

Table 2.3: Popular superfamilies in MG and TB. The table lists all SCOP superfamilies which
occur in the top 10 ranks in MG and/or TB.

a common ancestor. A superfamily with e.g. ten domain members in a genome

therefore was duplicated nine times. Results from this work give figures for the

percentage of protein domains that arose by duplication in MG and TB as 49% and

84%. Thus as suggested by others (Teichmann et al., 1999), the larger genome of

TB shows a far greater extent of domain duplication. Teichmann and coworkers

using two-way PSI-BLAST on calculated a domain duplication rate for MG of 58%.

Thus the precise figures for domain duplication obtained in this work will need to be

revised using two-way PSI-BLAST, but the general observation about the relative

rates of duplication should remain valid.

2.5.2 How much of the genome can be classified

A further consideration of this work is how much of the MG and TB genomes

have either structural or both sequence and structural homologues in the databases.

For structural assignment, the SCOP1625 data set was updated by including PSI-

BLAST matches to a sequence of the PDB (Abola et al., 1997; Berman et al., 2000).

This resulting structural database includes proteins with coordinates deposited after

SCOP was compiled, and accordingly a larger fraction of the genomes will be struc-

turally annotated than described in section 2.5.1 that used only SCOP1625 data.
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For sequence assignments one needs to include any match to any sequence that has

a useful annotation. To consider this, any match with the text description that

includes the words ‘probable’ or ‘hypothetical’ was excluded, although this is only

a first approximation to evaluate what corresponds to a functionally useful annota-

tion. In addition matches of species name (MG or TB) between query and database

were ignored as a useful annotation. Segments were identified as low complexity

regions if they were longer than 24 residues using the SEG program with default

parameters (Wootton & Federhen, 1996). Coiled-coil region were found using MUL-

TICOIL with defaults (Wolf et al., 1997). Transmembrane regions were identified

using the ‘certain’ assignment in TOPPRED (von Heijne, 1992).

Figure 2.5 presents pie-charts of the results in terms of residues and represents

the results in 1999. In the SCOP benchmark for remote homologues, 28% of the

SCOP genome was annotated and 59% was missed (undetected homologues) so there

are 2.1 times as many potential remote homologues in the database as detected by

PSI-BLAST (figure 2.5 (a)). To consider the potential for structural assignment in

genomes, first close and then remote homologues of known structure were identi-

fied. From the benchmark the scaling factor of 2.1 was taken and applied to the

fraction of remote structural matches. Thus there are 32% of missing structural

matches in MG and 36% in TB (figures 2.5 (b) and (c)). Enhanced methods such

as two-way PSI-BLAST, hidden Markov models and threading have a major role to

play in structural annotation of genomes (see Jones (1999a) for another approach to

estimate missing structural matches in genomes). As there are very few coiled-coils,

transmembrane and low complexity regions in SCOP and the PDB, these must be

added to the pie-chart for structural assignment in MG and TB (see figures 2.5 (b)

and (c)), there is <1% of coiled-coils in TB). Therefore, as an estimation, there

remains 31% of the residues in MG and 22% of TB that are in new superfamilies

from globular proteins.

To evaluate the potential for functional annotation, first matches to close ho-

mologues of either structure or just sequence were identified and then the remote

matches were considered. Many short low complexity regions, coiled-coils and trans-

membrane proteins will be matched by PSI-BLAST to homologues in the sequence

database. Therefore, unlike the pie-charts for structural assignment, we do not indi-

cate separately coiled-coils and transmembrane regions, (see legend to figure 2.5 for

more details). Assignments to low complexity regions longer than 24 residues will



Benchmarking PSI-BLAST in genome annotation 77

generally not be matched by PSI-BLAST and are indicated in the pie-charts, (1% in

the MG and 5% in the TB genome). The correction factor of 2.1 can then be applied

to the remote homologues to estimate the missed homologues in the databases (17%

for MG and 11% for TB).

Figure 2.5(d) shows that in MG if all the missed homologues were identified,

there is only a small fraction of the MG genome left to annotate. Although ho-

mologous proteins can have different functions, this remains a rare event for the

broad function (Hegyi & Gerstein, 1999; Russell et al., 1998b). Thus the pie-chart

suggests that nearly all the gene functions of MG are described in annotations of the

present sequence databases. Indeed it has been suggested that the MG genome is not

much larger than the minimal required for cellular life (Mushegian & Koonin, 1996).

For TB (figure 2.5(e)), after allowing for missed homologues, there remains

roughly 14% of the genome that is formed from genes that are not homologous

to annotated genes of known function. Thus there may well be several genes of

previously unrecognised function in TB.

The above calculations are based on the assumption that the ratio of detected

to undetected remote homologues found from the SCOP benchmark will apply to

the actual genomes. Although this ratio varies for the different superfamilies (see

figure 2.3(a)), the overall trend is that the ratio is not dependent on the size of the

superfamily, and for many genomes the value from the SCOP benchmark should pro-

vide a valid first approximation. Note that the pie-charts are based on fractions of

residues annotated and some other workers (Mushegian & Koonin, 1996; Teichmann

et al., 1998; Jones, 1999a) take a different approach and consider there is structural

/ functional annotation for an ORF if any part of that ORF is homologous to a

database protein of known structure / function.

2.6 Discussion and Conclusions

This study benchmarked the coverage and error rate of PSI-BLAST when applied

to the recognition of remote homologies in the annotation of a genome. The evalua-

tion was based on recognising remote homologies (<20% identity) between protein

domains of known structure. The critical aspect of the evaluation is that it included
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true positives (28%)

new superfamilies

missing (59%)

(12%)
unique folds
false positives (1%)

close (71%)

low complexity (5%)

new superfamilies

coiled coil (1%)
transmembrane (6%)

low complexity (1%)

transmembrane (8%)

(22%)

new (3%)

close (65%)

a) SCOP genome structure assignment

b) MG structure assignment

c) TB structure assignment e) TB function assignment

d) MG function assignment

low complexity (5%)

remote (8%)

missing (17%)

low complexity (1%)

remote (5%)

missing (11%)

new (14%)

close (12%)

remote (15%)

missing (32%)

close (14%)

remote (17%) 

missing (36%)

(31%)

Figure 2.5: Identified and missed homologues. Results are on a per residue basis. (a) The results
of the SCOP benchmark. For remote homologues (<20% identity), the data in table 2.2 is plotted
as a pie-chart. The figure shows the percentage of the SCOP genome that (i) was correctly assigned,
(ii) incorrectly missed, (iii) erroneously assigned and (iv) that were in a unique superfamily with
no target assignment possible. The ratio of (ii) / (i) provides the correction factor used in the
other charts to estimate the missed remote homologues. (b) The results of structural assignment
for MG. The chart shows the percentage of the genome that has a close structural homologue,
a remote structural homologue and the estimation of the missed structural remote homologues.
(c) As (b) but for TB, coiled-coils are < 1%. (d) The results of functional assignment for MG.
Matches are to sequences with functional annotation. Missing are undetected homologues. New
are ORFs with no previously known homologous. (e) As (d) but for TB. Transmembrane regions
are 6% of the residues in MG and 8% in TB, 1% of the residues are in coiled-coil regions in MG
and < 1% in TB. As figures (b) and (c) show these regions are not matched by any sequence of
known structure (in fact there are a few matches but without impact on the percentage figures).
In figures (d)-(e) transmembrane helixes and coiled-coils are not shown in separate fractions in
the pie-charts because about 2/3rd of the transmembrane regions and nearly all of the coiled-coils
are matched by sequence hits of known function (data not shown). That means the remaining
1/3rd (2% of the residues for MG and 3% for TB) of the transmembrane regions are distributed in
the fractions for missing and new functions. Low complexity regions longer than 24 residues are
indicated in (b)-(e) because these regions cannot matched by any sequence.

the requirement that only one out of several possible homologies needs to be identi-

fied to assign the query to a homologous superfamily. In addition, the multi-domain

structure of queries is included in the evaluation. Thus the model used is close to

the actual aspects of genome annotation.

Although a structural benchmark is used, the results are particularly relevant to
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evaluate the accuracy of assigning proteins to any homologous sequences (including

those of unknown structure), which is the standard first step in the interpretation

of a genome. In particular, methods such as two-way PSI-BLAST become compu-

tationally prohibitive if a representative sequence (rather than structural) database

becomes the probes. Profile methods such as IMPALA (Schaffer et al., 1999) pro-

vide an alternative to the two-way PSI-BLAST approach. A query sequence is

compared to a library of profiles each representing a protein family (e.g. a SCOP

superfamily). Clearly fold recognition methods cannot be applied when there are no

structural homologues. In one respect, the benchmark does not carry over to just

sequence annotation as we used the structure based domain information that is not

available for all sequences without coordinates. However, domain assignment can

still be obtained from databases such as PRODOM (Corpet et al., 2000), SMART

(Letunic et al., 2002) and PFAM (Bateman et al., 2002) for many sequences without

known structure (see section 1.2.3 for an introduction into domain databases).

The key results of the study are:

• Genome assignment is based on one-to-many identification and successfully

recognises around 40% of the remote homologies (<20% identity) between

protein domain regions. This corresponds to recognition of 32% on a per

residue basis.

• Previous benchmarks evaluating one-to-one rather than one-to-many identifi-

cation would suggest a three-fold lower success rate.

• In general, the more populated superfamilies do not have improved success

rates for genome identification.

• Domain boundaries determined from the alignment of the query to the target

are well characterised, 65% are correctly found to within 5 residues.

• There are major differences between the most common superfamilies in the

minimal bacterial genome of MG compared to that in TB.

• Based on the success rate for detecting remote homologies, about 30-40% of

the residues in the analysed bacterial genomes do not correspond to a protein

of known structure.
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• There are very few proteins in MG that do not have a homologue of annotated

function in the databases but there probably are far more ORFs in TB with

novel function.

2.7 Materials and Methods

2.7.1 Sequence database for PSI-BLAST profiles

A non-redundant protein sequence database (NRPROT) containing 302891 entries

was generated by progressively taking sequences from the Protein Data Bank (Abola

et al., 1997; Berman et al., 2000), TrEMBL-NEW, TrEMBL, SWISSPROT-NEW,

SWISSPROT (Bairoch & Apweiler, 2000) and PIR (Barker et al., 2000) but exclud-

ing any sequences that are 100% identical4. Next, the SCOP1625 target library was

added to NRPROT so that hits to known structures can readily be identified. To

ensure the optimal generation of sequence profiles (but not for structural matches),

to the above sequence library the concatenated regions of discontinuous domains

and the entire chains from multi domain proteins were added. This database is

called NRPROT-SCOP.

2.7.2 PSI-BLAST

The sequence similarity search algorithm PSI-BLAST was benchmarked (Altschul

et al., 1997). An important parameter in the procedure is the e-value, which is

the theoretically calculated number of errors per query, for details see section 1.3.4,

in summary: PSI-BLAST first searches the sequence database using the gapped

BLAST algorithm to collect obvious homologues defined as sequences with an e-

value < a chosen cut-off (h) and here h = 0.0005. These sequences are collected

and aligned to generate a profile that is converted to a position specific scoring

matrix (a PSSM). The PSSM is used in subsequent iterations to identify more re-

mote sequences that are added to the PSSM if their e-value is below the cut-off h.

PSI-BLAST is run for 20 iterations. Sequence hits are scored by their e-value. Low

complexity regions that can introduce erroneous matches were removed from the

query and NRPROT-SCOP database using SEG with default parameters (Wootton

4This database was provided by A. Stewart from the Computational Genome Analysis Labora-
tory from Cancer Research UK
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& Federhen, 1996).

As noted by others (e.g. Park et al. (1998)), sometimes sequences can be erro-

neously added to the PSSM causing PSI-BLAST to drift from the original set of

homologues. To check for this, the sequences included in the PSSM for an iteration

were checked to ensure that they always included all the sequences found in the

first search with gapped-BLAST. If the PSSM drifted away from including all the

original set of sequences, then the PSI-BLAST run was restarted with an h values

of 0.1 the previous value. This is repeated until the h value is 5× 10−16 or no drift

is detected.

Sequence hits from iterations other than the first could still drift out of the final

profile and not be identified as homologues. Thus each iteration of the PSI-BLAST

output was parsed. A sequence listed in an iteration was collected if it was not al-

ready found in a previous iteration or if the e-value of that hit was below the e-value

of the previous collected one (in this case the new alignment replaced the old one).

All hits with their individual position of the alignment, percent sequence identity,

e-value, first and last residue of the alignment together with the full length query

were stored in a file as a stacked multiple sequence alignment sorted from lowest

(best) to highest e-value.

2.7.3 Identification of regions and domains in the query se-

quence

The percent overlap between two hits in the stacked multiple sequence alignment

is defined as the length of the overlap in residues as a percentage of the shorter

sequence. Two homologous sequences are defined as overlapping if their percent

overlap is at least 50%.

The first step in the identification procedure is a clustering of sequence hits (fig-

ure 2.6). The hit of lowest (i.e. best) e-value is progressively compared to hits of

higher e-values and the two hits are clustered if they overlap. A hit can only join an

existing cluster if it overlaps with every member of the existing cluster. This is then

repeated for the hit of the second lowest e-value against all the remaining hits and

subsequently for the remaining hits of lower e-value. Next, all hits that cannot be
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clustered are considered as a cluster with one member. Finally regions are assigned

to the query sequence using only the member of lowest e-value of each cluster. The

structural classification of this hit is assigned to the appropriate region in the query.
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Figure 2.6: Annotating the SCOP genome on the domain level. The flow chart shows the methods
to identify domains in a query sequence. (a) Sequences are schematically represented as bars.
Homologues of the query sequence found by PSI-BLAST (A to G) are represented as a stacked
multiple sequence alignment sorted by increasing e-value. (b) The target sequences are clustered
(see text). Sequences of the same cluster are indicated by a common pattern. Three clusters (C1
to C3) have been generated. (c) Finally the target of lowest (best) e-value of each cluster is taken
for the domain assignment (annotation) of the query. These best targets are truncated at the N-
and C-terminus so that domain boundaries do not overlap.

2.7.4 Benchmark of remote homologues

The aim is to consider each sequence in the SCOP genome in turn and to evaluate

the success of finding a remote homologue of known structure using PSI-BLAST.

Therefore it is necessary to define when remote homology begins in terms of diffi-

culty in being recognised by PSI-BLAST.



Benchmarking PSI-BLAST in genome annotation 83

Rost (1999), extending previous work by Sander & Schneider (1991), derived

an equation relating both sequence identity and alignment length to distinguish

between true homologues and false positives for low levels of sequence identity (see

figure 2.7). Very short alignments require a much higher percentage identity to be

confident that they truly represent homologous relationships. The identity falls off

exponentially and for alignment lengths of more than 350 residues, there is roughly

a fixed identity cut-off. The actual equation is taken from the Web site http://-

www.embl-heidelberg.de/˜rost/ and is:

pcut = 510 ∗ L(−0.32∗(1.0+exp(−L/1000))) (2.1)

where pcut is the required percent identity for an alignment and L is the length

of the alignment. This corresponds to defining alignments of over 350 residues as

remote homologues if they have less than 20% identity and for simplicity we refer

to this as the 20% identity cut-off.

The validity of using this cut-off is shown in figure 2.7. From an independent

study the following data has been derived5: First, each single domain protein in

SCOP1625, all homologous pairs (i.e. the same superfamily) of less than 40% iden-

tity, were structurally superimposed using the method of Orengo et al. (1992). From

these structural superposition, the number of residues equivalenced and the percent

identity were taken. The capacity for PSI-BLAST to recognise each pair was evalu-

ated using an acceptance e-value of 0.0001 and up to 20 iteration but without saving

intermediate matches that drift out of the profile.

Figure 2.7(b) shows that above 20% identity given by the cut-off from equation

2.1 there are only 11 homologous pairs that could not be identified by PSI-BLAST

in a one-to-one evaluation. These 11 pairs correspond to 4% of all the possible pairs

above the 20% sequence identity. The one-to-many success rate for PSI-BLAST

above this cut-off can only be better than this level of success.

In the evaluation of the assignment accuracy for a particular SCOP sequence,

that sequence was searched against all the SCOP entries in NRPROT-SCOP using

gapped BLAST (Altschul et al., 1997) (not PSI-BLAST). Matches with a percent

identity (≥ pcut were excluded as they are close homologues of the SCOP protein.

5This data was provided by R.M. MacCallum

http://www.embl-heidelberg.de/~rost/
http://www.embl-heidelberg.de/~rost/
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2.7.5 Genome data

The genome of Mycoplasma genitalium (isolate G37) has 479 ORFs (Fraser et al.,

1995) and was downloaded from The Institute For Genome Research (TIGR, http://-

www.tigr.org/). The list of translated ORFs of the Mycobacterium tuberculosis

genome (strain H37Rv) was down loaded from The Sanger Centre (http://www.-

sanger.ac.uk/Projects/M tuberculosis). The genome contains 3924 ORFs (Cole

et al., 1998).

2.8 Remarks about recent PSI-BLAST enhance-

ments

The benchmark described in this chapter was carried out in 1998/99, and since then

the PSI-BLAST method has been enhanced (Schaffer et al., 2001) based on evalua-

tions from different research groups including the benchmark described in this work.

The PSI-BLAST version used in this work belongs to the 2.0 series that uses a

pre-calculated λ for the initial substitution matrix (here BLOSUM62 was used) and

for the position specific search (see sections 1.3.4 and 1.3.5 for details). The bit score

and the therefore the e-value is dependent on the scoring system (and in particular

λ) that is used. The PSI-BLAST 2.1 series (Schaffer et al., 2001) contains several

enhancements such as a position specific scoring system that generally produces

higher e-values, representing a better estimation of the real (observed) error rate

(also see section 1.3.5). In addition the new scoring scheme reduces the ‘drift’ effect

that may be induced by corruption of the PSSM as described in section 2.7.2.

http://www.tigr.org/
http://www.tigr.org/
http://www.sanger.ac.uk/Projects/M_tuberculosis
http://www.sanger.ac.uk/Projects/M_tuberculosis
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Figure 2.7: Identification of homologues by PSI-BLAST. Equation 2.1 is plotted as a function
of structural equivalenced residues. All pairs of the same superfamily of the SCOP1625 database
were structurally superimposed (see text) to identify structurally equivalenced regions (this is used
as the sequence alignment length) and the percent sequence identity for each pair. Homologous
pairs that can also be identified with PSI-BLAST are plotted as points in (a), pairs that cannot
be identified in (b). Pairs on and above the curve are defined as close homologues and those below
as remote homologues. There are only very few close homologues which cannot be identified by
PSI-BLAST. The SCOP1625 database includes only pairs of proteins of <40% identity calculated
by sequence (not structural) alignment.
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Chapter 3

3D-GENOMICS: A proteome

annotation pipeline

3.1 Summary

An automated proteome annotation system has been developed. The

back-end is a relational database for data storage such as protein se-

quences and results from different protein based analyses. The database

is interfaced by an object-oriented software API (Application Program-

ming Interface) that allows for easy access for the analysis of the stored

data. The API is used to run different analyses such as PSI-BLAST

based sequence comparisons and to store the results as objects within

the database. Several versions of an analysis can be managed. The anal-

ysis of a set of sequences can be automatically distributed over several

computers. Several levels of inheritance within the database scheme and

the API allow for straightforward integration of new analysis tools. This

chapter explains the principles on which the database and the API are

based.

3.2 Introduction

This chapter describes the database and software system that has been developed

to perform the analysis described in chapter 4 and has also been used for other

projects within the Biomolecular Modelling Laboratory at Cancer Research UK and
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the Structural Bioinformatics Group at Imperial College. The system is referred to

as 3D-GENOMICS.

The objectives of the 3D-GENOMICS project are:

• To provide an abstract back-end research platform that can be employed in

different projects related to the comparative analysis of genomes. On top of

this platform software can be developed to perform specific tasks.

• To develop the software that is necessary for the comparative analysis of pro-

tein sequences described in chapter 4.

• To provide a back-end for a web based proteome annotation and information

system that can be updated on a regular basis.

The last point of the objectives is not fully implemented for reasons discussed

at the end of this chapter. However, there is a web-interface to 3D-GENOMICS

accessible at http://www.sbg.bio.ac.ic.uk.

The initial objective was to develop a platform for large scale, mainly structure

based bioinformatics projects including large scale homology modelling, which is the

main justification for the name 3D-GENOMICS.

Following the analysis of PSI-BLAST in genome annotation and the applica-

tion to the genomes of M. genitalium and M. tuberculosis described in chapter 2,

3D-GENOMICS has been developed as a re-usable and automated system for com-

parative analysis of genomes (the proteins of fully sequenced genomes in particular).

This chapter therefore describes the general architecture of 3D-GENOMICS. Chap-

ter 4 is an application of this system, and contains its own methods section describing

parameters and other specificities of the analysis.

3D-GENOMICS contains pre-calculated results from different analyses, such as

sequence comparisons, for a range of proteomes. The overall architecture of 3D-

GENOMICS is a relational database, to store data such as protein sequences, do-

mains and alignments. An object-oriented application programming interface (API)

written in object-oriented Perl encapsulates this database layer. Once the analysis

pipeline has been completed, access to the pool of data can be performed on demand

via the API without having to perform any of the often time-consuming analysis,

http://www.sbg.bio.ic.ac.uk
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and with a minimum of code development. Several versions of the same type of

analysis (e.g. using different parameters) can be stored. Changes to the database

scheme are encapsulated by the API, so that front-end scripts do not have to be

modified every time the database scheme is changed. On top of the API, scripts for

automated data analysis and visualisation of results have been developed, including

web based applications.

This chapter does not include a complete description of the database scheme, nor

does it provide a manual or a tutorial for the API and the applications developed

during this work. This chapter gives an overview of the principles that have been

used to handle the objectives described above.

3.3 Resources

As pointed out above, results are pre-calculated. A set of standard sequence analysis

software packages is run for a set of protein sequences. The software that is cur-

rently integrated in 3D-GENOMICS, and therefore part of the sequence processing

pipeline, is listed in table 3.1. The integrated source databases are listed in table 3.2.

3.4 Architecture of the 3D-GENOMICS system

This section describes the architecture of the relational database and briefly de-

scribes the front-end API that was developed to process and retrieve data from the

3D-GENOMICS system1. Although the API is meant to be a stable interface to the

database, independent of changes to the database scheme, in the current version of

3D-GENOMICS there is a close link between the database and the API.

3.4.1 The core scheme of the relational database

Figure 3.1 shows an entity relationship diagram (Chen, 1976; Connolly et al., 1998)

of the 3D-GENOMICS relational database. An entity is physically implemented as

1R.M. MacCallum contributed to the development of the core database scheme and the core
API
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a database table, and usually has a primary key that is unique for the entity, i.e. it

identifies a particular entity. A weak entity depends on another (strong) entity, and

usually does not have its own primary key, but uses the primary key of the strong

entity it depends on (the weak key within the weak entity). The diagram is sim-

plified, showing only the most important tables, attributes and keys of the entities,

and most of the entity inheritance (superclass-subclass relations) is not shown. The

diagram only demonstrates the principles on which the 3D-GENOMICS database

scheme is built. The paragraphs below describe each of the entities and their rela-

tions.

The green part of the diagram represents part of the database scheme related

to protein sequences. A Pseq entity represents a protein sequence that has the Seq

attribute, which is the amino acid sequence string and the primary key PseqId. One

protein sequence can have several descriptions, so that the same sequence may be

present in several sequence databases (having different accession numbers). A se-

quence may have slightly different descriptions in different source databases such as

‘protein kinase (type A)’ and ‘protein kinase A’. Furthermore, the description has

a relation to the taxonomy database provided by the NCBI via the TaxId. If a pro-

tein sequence has several descriptions, these may be from different organisms (i.e.

different organisms with exactly the same sequence). A protein description cannot

exist without a protein sequence, and therefore the Pdesc entity is weak, although

for technical reasons it has its own primary key (PdescId). Each protein description

may have a list of associated keywords (Tag entities). Several descriptions may share

a set of keywords. This relation is implemented via the helper table PdescTag. A

Tag has a Name (the keyword), and a Type which is either user (the tag has been

inserted manually to label a protein description or a set of descriptions), static (usu-

ally tags automatically set by scripts that insert sequences into the 3D-GENOMICS

database) or db (an abbreviated name of a source database). A description entity

may have Tags of the same name but different type. Associating descriptions with

Tags allows the selection of a sets of sequences with a common label. All sequences

from the ensembl version 0.8.0 dataset of human proteins may have the tags human

(type user), ensembl (type db) and v0.8.0 (type user). Pseq and Pdesc entities also

contain attributes keeping track of the date of data integration and modification.

The blue part of the diagram shows entities that store information about the in-

tegrated analysis programs that have been run. The central entity is the Run, which
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keeps basic information about an analysis. This includes an error string returned

by the analysis software. The Run entity is abstract, i.e. it is a superclass from

which other entities such as BlastRun (not shown in figure 3.1) inherit. Therefore

the name of the subclass to which this run belongs (BlastRun) has to be stored, so

that an instance of the correct entity (or object on the API level) can be recreated

from the stored data. The Params entity stores an optional set of parameters that

was used to run the analysis (e.g. an e-value cut-off and the name of the sequence

database for a BlastRun object). A run can have several parameters, and the same

set of parameters can be used by different runs. Params entities with the same

ParamsId define a set of parameters that belong together.

A Run is the superclass (the same as a baseclass) of specialised run entities such

as a GenomeRun shown in figure 3.4 that treats a genome or proteome as a whole

or a PseqRun that represents an analysis that was performed on a protein sequence

or a protein sequence fragment (given by the start and stop attributes). A sequence

may be subject to many PseqRuns. The PseqRun entity itself is the superclass of

more specialised sequence based analyses such as BlastRun.

The red part of the diagram shows the results of PseqRuns. These are Features,

that describe a region of the protein sequence (given by the Start/Stop attributes)

of the corresponding run (referenced by the RunId). A Feature is a weak entity,

because it cannot exist without a Run, although this entity has its own primary key

for technical reasons. A Feature may also be produced by other instances inheriting

from Run which are not PseqRuns, e.g. a gene feature representing the location of

a gene on a chromosome. However, in the current version of 3D-GENOMICS only

PseqRun based features are implemented. Specialised entities such as an Alignment

inherit from Feature to extend its list of attributes (and methods on the API level).

Like the Run entity, the Feature entity is abstract, and the class/entity name of the

feature has to be stored in the database to reconstruct an API-object of the correct

class.

The special PerlObject entity is explained later together with figure 3.9.

The complete 3D-GENOMICS database currently contains 65 tables of which 42

tables are of relevance to this work. Of these tables 18 may be counted as core tables,

21 as subclasses that totally participate in a superclass, and 3 tables for the OMIM
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Figure 3.1: Simplified entity relationship diagram of the 3D-GENOMICS database. Protein
sequence related entities are coloured in green, Run related entities (representing entities coupled
with analyses software) are coloured in blue and Features (results from an analysis) are coloured
in red. ‘Helper’ entities and relations are shown in white. The legend inside the figure explains
the meaning of the symbols, see text for details.

disease database (part of the 3D-GENOMICS database). In addition the taxonomy

database is implemented in its own database which can be obtained from the NCBI

(see table 3.2) and imported into a relational database system. The SCOP database

is provided in flat files via the URL given in table 3.2 and is converted into a simple

relational database that is linked to 3D-GENOMICS via accession numbers (in the

Pdesc table) and tags (see table A.2 in the appendix for the table definitions that

have been chosen to represent SCOP). In addition a scratch database is required to

write temporary tables for the web-service and for some analysis scripts. Table A.1

in the appendix explains the important tables and their attributes.
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3.4.2 Inheritance is a major aspect of the database archi-

tecture

As mentioned above and indicated in figure 3.1, the Run and the Feature entities

are superclasses for several specialised entities (subclasses). Figure 3.2 schematically

shows the inheritance as a flow-chart. In the current version of 3D-GENOMICS,

all Feature ‘producing’ objects (indicated by lines without arrow head) are PseqRun

objects.

The PsiBlastRun and PsiBlastHit subclasses have the deepest inheritance in the

3D-GENOMICS system. A PsiBlastHit is a BlastHit and adds the iteration attribute

(in which this hit was found) to the BlastHit. The PSSM of the last iteration is an

attribute specific to a PsiBlastRun, but it is a BlastRun. A BlastHit is a special type

of Alignment, it has a score and an e-value. The Alignment stores information that

is required to reconstruct the complete sequence alignment. It contains a reference

to the subject sequence of the alignment, the start and stop of the alignment within

the subject, the percent sequence identity and insertions and deletions within the

query and the subject sequences. The last level of inheritance is the Feature (the

superclass on the database level), that has a start and a stop attribute that is used

to describe the location of the feature within the sequence that was subject to the

analysis. The Feature references a PseqRun entity, from which the protein sequence

for which the analysis was run can be obtained.

The PSSM3dHit indicates that there are Feature types that do not have a spe-

cialised entity that inherits from PseqRun (there is a direct connection between

PSSM3dHit and PseqRun in figure 3.2). However, on the 3D-GENOMICS API level

there is always a corresponding specialised Run class (for example the PSSM3dRun

class) that at least provides a method to perform the analysis. On the database

level there is only a specialised entity if information has to be made persistent, for

example a PsiBlastRun has its own entity because the last PSSM of the PSI-BLAST

run has to be stored.

The CoilRun/Coil entities are given as examples of other Features that are not

Alignments. In the current version of 3D-GENOMICS there are eight such entities

(and classes on the API level, see tables A.1 and A.3 of the appendix).



3D-GENOMICS: A proteome annotation pipeline 95

Inheritance is implemented by referencing the different tables that represent the

different levels of specialisation by the same primary key, which is the FeatureId for

Features and the RunId for Runs. There is total participation between the PseqRun

entity and the Feature entity, i.e. all Features have a PseqRun they come from. The

Run entity is also a superclass of other specialised entities that are not PseqRuns.

The GenomeRun is a superclass for analysis that treat a proteome as a whole, i.e.

that do not consider individual protein sequences.

FeatureRun  Alignment 

 PSSM3DHit 

    Coil     CoilRun  

PsiBlastRun

  BlastRun 

DomainStat

GenomeRun

  PseqRun  

  BlastHit 

PsiBlastHit

Figure 3.2: Flow-chart of inheritance in the 3D-GENOMICS database. Entities inheriting from
the Run superclass are shown with blue background, and those entities inheriting from the Feature
superclass are with red background. The basic superclasses have blue and red outlined boxes.
Inheritance is shown as arrows, where the arrowhead points to the entity the other entity inherits
from (subclass→ superclass), lines without arrowheads indicate that the run produces a particular
kind of Feature. The same level of indentation of entities of the same colour (red and blue) shows
the same level within the inheritance tree, e.g. Alignment and Coil directly inherit from Feature.
The GenomeRun subclass is a special Run class that does not produce Feature objects (it manages
analyses that treat a proteome as whole), DomainStat is a specialisation of GenomeRun that is
specifically designed for web purposes.

3.5 Post-processing and summary of primary re-

sults

For fast data retrieval from the database the results from the different types of anal-

ysis are summarised by reducing the complexity of the database queries and the
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amount of data that has to be retrieved. The three steps of data summary imple-

mented in the current version of 3D-GENOMICS are:

1. Clustering aligned regions from BLAST, PSI-BLAST or IMPALA runs within

a query sequence, so that a protein sequence can be described with a small

set of regions rather than a huge number of alignments which often do not

contribute much additional information.

2. Summarising region clusters and other features such as transmembrane do-

mains to produce a genome wide annotation overview.

3. The above steps are used to generate specialised data warehouses for fast and

simple data access required for e.g. web based applications.

The sections below describe the summary steps as a processing pipeline. The un-

derlying database scheme that implements the data summary is explained together

with examples.

Different levels of analysis reduce the complexity of data

Figure 3.3 shows the flow of data and results within the 3D-GENOMICS processing

pipeline starting after the basic analysis has been run. The results of these anal-

yses are symbolised inside the triangle as ‘Atomic Features’ (in red). These basic

analyses include BLAST and PSI-BLAST runs, assignments to PFAM, prediction

of transmembrane helices, signal peptides etc ... (see table 3.1 and 3.2 for a list of

integrated resources). The amount of stored basic (atomic) data is huge, e.g. for

the human protein dataset (29,000 protein sequences) more than 17,000,000 PSI-

BLAST alignment objects are stored.

The red rectangles of the left part of the figure show the atomic features. These

are stored per analysis and per sequence. There are several homologues sequences

per query, symbolised by the thin coloured lines. These homologues can be clustered

according to their position within the query sequence (thick black line) and their

sequence type, symbolised by a common colour of the thin lines (e.g. sequences of

known structure, homologues from the SwissProt database, etc ...). This produces

different region types per sequence. The clustering is explained in section 3.5. This
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step reduces the number of alignments to less than 87,000 overlapping regions for

the human proteome without reducing the annotation quality markedly.

The region information together with some of the basic non-alignment features,

such as transmembrane helices, are then summarised as genome-wide statistics de-

scribing the extent of the different types of annotation (blue part of the triangle

and blue boxes to the left). It contains the annotation extent as the number of

sequences with a particular type of annotation (e.g. the number of sequences with

at least one homologue of known structure, or the number of membrane proteins),

the number and types of annotated regions within a proteome (e.g. the number

of SCOP domains or regions with functional annotation, the number of transmem-

brane domains, etc ...) and the number of amino acid residues that are covered by

an annotation type. These annotation categories can be easily accessed, and indi-

vidual sequences or regions for a category can be retrieved. There are 4,200 of these

annotation summaries for the proteome wide summary for human.

For comparative analysis one can compare genome summaries between differ-

ent genomes. Usually this is straightforward and fast using the 3D-GENOMICS

API. However, for more specific comparative analyses such as the different frequen-

cies of SCOP superfamilies in globular parts of transmembrane proteins in different

proteomes (as discussed in section 4.4.7), an additional summary step that uses in-

formation from all three of the above analysis levels is generated. This last summary

step was developed in a relatively short period after most of the 3D-GENOMICS

system was already in use for ongoing research. The interest in a particular re-

search project, the comparison of SCOP domains in different contexts, required this

additional step to make some of the 3D-GENOMICS data even more easily acces-

sible. This shows that the 3D-GENOMICS system is rather abstract and may not

always allow direct solutions, but also demonstrates that on top of this general and

abstract core, specialised objects and applications can be developed with relatively

little effort. This specialised data summary further reduces the amount of data from

the genome wide summary described above (4,200 annotation descriptions) to 546

SCOP domain descriptions for the human proteome.
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Figure 3.3: Steps to summarise data and intermediate results. Steps in a particular colour in
the triangle represent the summary steps and are detailed in the left part of the figure with steps
framed in the same colour as in the triangle. See text for details.

Supplementary entities and relations for the data summary

The summary of alignments into clusters that describe the same region within a

query sequence that was introduced above, is performed in a similar way as the

clustering of SCOP domains described in the methods section of chapter 2. There

are currently four alignment based region types that are relevant to this work (these

are used in chapter 4). Regions of the same type do not overlap, and ends are

adjusted in the same way as described in section 2.7.3. Different region types may

overlap, and an alignment may participate in different region types. The four region

types are explained below.

1. SCOP regions. Clusters of alignments with sequence subjects corresponding

to SCOP domains.

2. PDB regions. Clusters of alignments with sequences subjects of known struc-

tures (PDB chains). These chains may contain more than one domain.
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3. Annotated regions. Alignments with sequence subjects from any of the

source databases SCOP, PDB, PIR or SwissProt, and with a textual descrip-

tion of the biochemical or biological function. Entries with descriptions con-

taining the substrings ‘hypothetical’, ‘probable’, ‘putative’ or ‘predicted’ are

excluded.

4. Homology regions. These regions contain any homologous sequences includ-

ing conserved hypothetical sequences without any useful functional descrip-

tion. This implies that every member of an annotated region is automatically

a member of a homology region.

In general the biological information content of these regions decreases starting

with SCOP domains providing most information with structural and often func-

tional information available on the domain level, followed by PDB regions with

similar biologically useful information but without distinguishing between domains,

and, with least information, the homology region that, in the absence of an an-

notated sequence, just highlights the conservation of this region without providing

direct insight into any biochemical function.

Non-domain regions (all but the SCOP regions), are generated using a greedy

version of the clustering described in the methods of chapter 2. A new member can

join an existing cluster if it overlaps with at least one member of that cluster by at

least one residue. This produces single linkage clusters. If alignment A overlaps with

alignment B, and A does not overlap with C but B overlaps with C, then A, B and C

are put into the same region. Before clustering, alignments are sorted decreasingly

by start position within the query to speed up the clustering. Once a cluster is

complete, its members are sorted by increasing e-value with the alignment of best e-

value taken as the representative for this region. In many cases the longest sequence

of a non-domain cluster defines the expansion of the region over the query sequence,

and also may often be the closest homologue of the query sequence. The methods

section of chapter 4 describes the actual constraints that were used to define regions.

For SCOP domains the clustered alignments roughly correspond to domains (ex-

cept for discontinuous domains, i.e. in which a structural domain is formed from

two or more discontinuous sequence segments). The other region types must not be

thought of as domains, but instead as summaries of alignments that may be used as

a general description of the query protein or a part of the query protein. The bene-
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fit is to speed up the analysis and comparisons of complete proteomes as discussed

above in section 3.5.

Figure 3.4 shows how regions are stored in the database, and how regions and

other features are used to generate a genome wide summary. For comparative anal-

ysis of genomes a possible starting point may be to compare the frequency and the

fraction of sequences or residues within the proteome that can be assigned to a par-

ticular feature. The GenomeRun entity with its related entities provides the storage

for this kind of analysis. Data retrieval is fast and straightforward (in terms of the

code that has to be written for an application that uses the 3D-GENOMICS API).

The upper part of figure 3.4 shows that a Region inherits from a Feature, because

a Region has a location within a sequence. A Region has a list of members (Region-

Features), and because all Regions are currently built by clustering alignments, this

list is in fact a list of Alignments (not shown in figure 3.4), which are in turn Fea-

tures. Regions for a protein sequence are generated by a SummaryRegionRun object

of the 3D-GENOMICS API, for which there is no corresponding entity in the data-

base. The different Region types have specialised classes in the API (ScopRegion,

PdbRegion, ...) which inherit from the Region baseclass. Currently no Region type

specific information has to be stored that cannot be retrieved easily via the core

scheme, so there are no corresponding entities in the database.

The lower part of figure 3.4 shows how the Region information is summarised

via a GenomeRun, which inherits from Run and performs a genome wide analysis to

summarise the available information (see also section 3.5). The genome or the list of

genomes for which this summary is created is stored within the Tags attribute of the

GenomeRun entity, which can be multi-valued (e.g. it is possible to store a genome

summary for a set of genomes such as E. coli and B. subtilis). Global annotation

counts or numbers for a GenomeRun are stored as GSCounts (‘Genome Summary

Counts’), with the frequency given by the Number attribute. The Type of the num-

ber describes whether the number refers to a protein sequence, a region or amino

acid residues. The Name is a description of the number, e.g. ‘total’, ‘Non-globular’

or ‘003.003.001’ for a SCOP superfamily accession number. For technical reasons

a special primary key GSCountId has been put into the GSCount entity. For most

region or sequence based GSCount entries the list of members can be accessed via

the MemberId which is either a FeatureId if the member is a Region or a PseqId if it
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is a protein sequence. There is a many-to-one relationship between GSMember and

Region or Pseq because different versions of a GenomeRun entity may reference the

same Region or sequence. In addition, if the MemberId is a PseqId one sequence can

be part of several GSMember types. For example a sequence can have structural

annotation as well as functional annotation.
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Figure 3.4: Entity relationship diagram of the data and result summary part of the 3D-
GENOMICS scheme. This part of the scheme does not belong to the core scheme. The MemberId
attribute above the GSMember that connects the relations from GSMember to Region and Pseq
indicates that the MemberId can be a FeatureId or a PseqId. See figure 3.1 for an explanation of
the symbols (the Tags attribute of the GenomeRun entity can store a list of values)

Usage and examples of the data summaries in 3D-GENOMICS

To demonstrate how to use the summary information represented in figure 3.4 a

simple code example is given in figure 3.5. The GenomeSummary object gs (which

inherits from GenomeRun) automatically connects to the database server when the
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readCount method is called. Once an object is connected to the database, this

connection will be re-used for all subsequent database requests by this object. The

parameter ‘latest’ for the construction of the GenomeSummary object automati-

cally generates the latest version of the analysis, alternatively a Params object can

be provided to specify a particular version. As mentioned in the introduction and

explained in section 3.6 on page 105, several versions of an analysis can be stored

and retrieved. gs->readCount(‘003.032.001’, ‘Regions’) returns the number

of SCOP domains with the superfamily accession code ‘003.032.001’ (P-loop), a

gs->readCount(‘003.032.001’, ‘Residues’) call would retrieve the number of

residues that are in P-loop domains.

In the loop to calculate the average P-loop length, a ScopRegion object is gener-

ated using the MemberId from the array that was returned from the gs->getMemberIds

call. The optional Parent attribute for the construction of the object will be used

to borrow the database connection from the gs object, so that only one database

connection is established for the whole script.

Figure 3.6 shows a screen-shot of the summary for the human proteome from the

3D-GENOMICS web-page (http://www.sbg.bio.ic.ac.uk/). The page is generated

dynamically on request, so that the summary pages do not have to be updated man-

ually after database updates (i.e. if a new GenomeSummary has been produced).

All information is requested from the 3D-GENOMICS system in a similar way as

shown in figure 3.5 using the API which accesses the underlying tables shown in

figure 3.4. The links within the page (blue text) are generated via the GSMember

entity and allow immediate access to the regions and sequences corresponding to the

different annotation categories. From these lists individual sequences and sequence

alignments can be accessed.

The different categories (rows) in the table in figure 3.6 correspond to different

Names in the GSCount entity shown in figure 3.4, and the columns (‘Sequences’,

‘Residues’ and ‘Regions’) correspond to the Type attribute in GSCount. SMART

domains have not been included in this analysis, and repeats have been excluded

from the cumulative analysis. See the legend to figure 3.6 for an explanation of

‘non-cumulative’ and ‘cumulative’.

http://www.sbg.bio.ic.ac.uk/
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#!/usr/bin/perl -w

use GenomeSummary; # the GenomeSummary class

use ScopRegion; # The ScopRegion class

### get the most recent GenomeSummary object ($gs) that

### corresponds to the ’Ecoli’ sequence set

my $gs = new GenomeSummary(Tags => [’Ecoli’], Params => ’latest’);

printf "%d SCOP domains found in E. coli\n",

$gs->readCount(’ScopRegion’, ’Regions’);

### get the IDs for all SCOP regions with superfamily accession

### 003.032.001 (P-loop)

my @memberids = $gs->getMemberIds(’003.032.001’, ’Regions’);

### calculate the average E. coli P-loop domain length

my $len = 0;

my $n = 0;

foreach my $id ( @memberids ) {

my $region = new ScopRegion(FeatureId => $id, Parent => $gs);

$len += $region->len();

$n++;

}

$len /= $n;

print "average length of E. coli P-loop domains is $len ($n domains)\n";

Figure 3.5: Code example demonstrating the use of the 3D-GENOMICS summary information
via the object-oriented Perl API.

3.6 Principles of the 3D-GENOMICS API

3D-GENOMICS stores data from the included source databases and the results from

the different analyses as objects in a relational database by mapping the objects onto

the relational scheme. This mapping includes the decomposition of each object into

its attributes and relations that may be stored across different tables. An alignment

for example contains a subject sequence (a homologue of the query) which is stored

as a reference to an entry in the Pseq table. The database is at least in the 1st nor-
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Figure 3.6: Screen-shot from the 3D-GENOMICS web-page showing a part of the analysis sum-
mary for the human proteome. The pie-chart shows the extent of assignments in different annota-
tion categories. The pie-chart is residue based, i.e. the fraction of the proteome in residues was cal-
culated. The table below the pie-chart gives details of the generated annotation. ‘non-cumulative’
means that the actual number of sequence, region or residue assignments are calculated by allow-
ing every sequence, region or residue to be counted more than once across the different categories
(e.g. a residue of a protein sequence may be part of a SCOP and a PFAM domain). ‘cumulative’
means that sequences, regions or residues are counted only once across annotation categories with
‘SCOP’ having priority followed by ‘PDB’ etc. to avoid exceeding 100% (e.g. sequences assigned
to a SCOP domain and a PDB chain are only counted for SCOP and not for PDB).

mal form, so that there is no obvious redundancy, and most relations of the database

core are also in the 2nd and 3rd normal form (Connolly et al., 1998). Although the

API should be the interface to the database, for fast access it is possible to bypass

the API and to access the contents (the stored objects with their relationships) di-

rectly via SQL.

The most central class of the 3D-GENOMICS API is the Run class with all its

specialised subclasses. A run object can be executed locally or submitted to a com-

puter farm as shown in figure 3.9 of section 3.7. It also contains a Params object

which gives details about the parameters that are specific for the analysis. From
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a PseqRun object the list of features that are specific for this run and a particular

protein sequence object can be retrieved. The usual way of getting sequence features

is to get the available PseqRun objects from a protein sequence object, and then to

request the list of features from each of these PseqRun objects.

The Params object for a Run object allows several different versions of a partic-

ular run to be created, e.g. one can have several PsiBlastRun objects for the same

sequence that are distinguished by their Params object (these may for example de-

fine different e-values). Figure 3.7 shows a simple example of how to get the objects

for a particular type of analysis, and from these objects the Feature objects.

my $pseq = new Pseq(PseqId => 123);

my $p = new Params(%BlastRun::default_params, blast_e => 0.1);

my @runs = $pseq->getRuns(’BlastRun’, $p);

foreach my $run ( @runs ) {

my @hits = $run->getFeatures();

# do something with the hit objects ...

}

Figure 3.7: A simple example to demonstrate how to access sequence features. The protein
sequence object with the ID 123 is retrieved from the database. A parameter object ($p) is
generated that contains the default attributes for a BlastRun (this is a class attribute), but overrides
the blast e attribute (the e-value cut-off). All BlastRun objects for this sequence that were run
with the requested parameter object are retrieved, and for each of these objects the feature objects
(type BlastHit) are retrieved. Note that several BlastRun objects may be available because several
fractions of the sequence may have been subject to the BLAST analysis.

The integration of new analysis software is straightforward, mainly due to the

different levels of inheritance. The hmmpfam program of the HMMer software pack-

age (see table 3.1) to identify PFAM domains in protein sequence via hidden Markov

models was integrated on demand after most of the API was already developed. The

HMMRun class inherits from PseqRun. The output consists of Features of the spe-

cial type HMMHit. The integration of hmmpfam was straightforward. Usually most

development has to be spent on the run routine that performs the actual analysis,

including the parsing of the program output. For the HMMRun the parser of the

BioPerl project (http://www.bioperl.org) is used.

http://www.bioperl.org
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The API is implemented in the Perl language. Perl may not be the ideal language

for bigger object-oriented software projects, it has for example no strict data typing,

and many developers complain about unreadability of the code. However, Perl is a

popular programming language within the biology and bioinformatics community,

and is the consensus language of those people who showed interest in the project.

An initial objective of the API was to provide some basic compatibility with the

BioPerl project. 3D-GENOMICS uses some BioPerl modules, and can also convert

a 3D-GENOMICS sequence object into a BioPerl equivalent, but at this time there

is no extended and consistent compatibility between the two systems. However, it

is possible to implement appropriate export routines on demand.

The 3D-GENOMICS API contains nearly 80 Perl modules with more than 17,000

lines of code defining classes and non-object-oriented code. In addition there are

about 40 scripts for database maintenance and evaluation, containing more than

3,000 lines of Perl code. There are 40 CGI scripts for web based applications with

more than 6,500 lines of code. In addition there are more than 1,500 lines of Python

code included to manage and parse BLAST and PSI-BLAST runs. Table A.3 ex-

plains the different modules and classes with their methods and functions that are

currently implemented in the API.

The base class from which most objects are built, is DbConnection. Objects that

are generated via the annotation pipeline (Run or Feature objects) or objects from a

source database (e.g. protein sequences) have to be stored persistently in the data-

base for later retrieval and analysis. Therefore such an object is a DbConnection

object, that is able to insert itself at the correct place within the database, update

its attributes, retrieve its data and delete itself from the database.

To construct an object from the database the identifier is needed (see line 1

in figure 3.8 for an example). The constructed TMH object (transmembrane helix

object) is empty, and can be filled with its attributes by either calling the sync

routine (line 4) or by just calling the get routine (see lines 5, 6 and 17), that in-

ternally performs the complete read synchronisation with the database and returns

the requested attributes, which stay within the object, so that subsequent get calls

do not need to query the database. A new object can be generated by providing

all required attributes but no unique identifier as shown in line 8. The new object

writes itself to the database with the next sync call (line 9). The set method (line
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11) sets attributes which must not already exist in the object (an empty object was

constructed in line 10), the next sync call writes the filled object to the database

(lines 12). Note, that an object usually has a defined set of attributes that have

to be set. An existing attribute can be modified via a modify call, shown in lines

13 to 14 (only a few classes allow attribute modification). If the sync method is

not called before the object is destroyed, all changes, including a complete newly

created object will be lost.

Lines 2 and 3 shows the usage of the clone method. If the FeatureId is known but

the special class of the feature is unknown, clone will produce a read-synchronised

copy of the object of the correct type.

Lines 15 to 18 show how an object (line 18) can be constructed that uses another

object as a Parent. The Parent provides the database connection, so that two ob-

jects can share the same connection. This avoids overhead of frequent connect and

disconnect requests to and from the database server. This technique is also used in

the example in figure 3.5.
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[ 1] $f = new TMH(FeatureId => 1001)

[ 2] $f = new Feature(FeatureId => 1002)

[ 3] $f = $f->clone()

[ 4] $f->sync()

[ 5] ($begin, $end) = $f->get(’Start’, ’Stop’)

[ 6] $tmrun = $f->get(’Run’)

[ 7] $params = $tmrun->get(’Params’)

[ 8] $f = new TMH(Start => 5, Stop => 24, Ori => ’out’, Run => $run)

[ 9] $f->sync()

[10] $f = new TMH()

[11] $f->set(Start => 5, Stop => 24, Ori => ’out’, Run => $run);

[12] $f->sync()

[13] $f->modify(Start => 8)

[14] $f->sync()

[15] $f = new TMH(FeatureId => 1003)

[16] $f->dbConnect();

[17] print $f->get(’Ori’)

[18] $f2 = new TMH(FeatureId => 2, Parent => $f)

Figure 3.8: Code examples to demonstrate the connectivity with the database. Note, this is
not a program, but just a collection of examples to show how objects can be generated from the
database, filled with data, be modified and how newly generated objects can be written into the
database. See text for explanations.

3.7 Principles of the analysis pipeline: a parallel

distributed system

The PerlObject entity shown in figure 3.1 plays a central role for the data produc-

tion process of the analysis pipeline that is schematically represented in figure 3.9.

The main annotation script (upper left box) contains code to generate different

kinds of Run objects, e.g. BlastRun objects. The information to generate these

objects is retrieved via an SQL interface from the 3D-GENOMICS database, that

uses MySQL as the database management system (http://www.mysql.com). For

a BlastRun object, this contains the protein sequence (the Pseq Object) and the

processing parameters (a Params object). The 3D-GENOMICS database server can

be hosted on a remote machine, and the annotation script runs on a queue-server

http://www.mysql.com
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that manages a computer farm via the OpenPBS load sharing and queueing system

(http://www.openpbs.org).

The generated Run objects are submitted to the queueing system via a special

software module of the 3D-GENOMICS API (the Workstations module), that calls

the queue method of each of the objects to be queued. The method creates a seri-

alised version of the object which is inserted as text into the PerlObject table of the

3D-GENOMICS database, and in return gets a unique ID (identifier) for this ob-

ject. The queue method creates an appropriate command for the queueing system.

This command contains the name of an executable program (runobject.pl) and the

ID of the persistent object as an argument. The object may also request special

resources from the queueing system such as a minimum amount of memory (the

resource management is implemented in OpenPBS).

The queue-server submits the command to one of the free computers that runs a

queue client (a PBS-daemon). The runobject.pl script retrieves the persistent object

via the unique ID from the PerlObject table of the database and recreates the object.

The script then executes the run method of the recreated Run object, which first

inserts some meta information about this run into the database, and then performs

the particular type of analysis (for example the BLAST program is executed on

the local machine). From the result (e.g. the BLAST program output) the special

type of result objects are generated (e.g. BlastHit objects). These objects are then

inserted into the database by calling their sync routine (object synchronisation with

the database). Finally the Run object cleans up resources such as temporary files,

updates the object status attribute with the final status and inserts the runtime of

the analysis. The runobject.pl script removes the run object from the PerlObject

table of the database (this is no longer required).

The growth of the data that has to be processed, and in particular the increasing

number of completed genomes, challenge the development of distributed processing

systems. It is sensible to re-run previous analyses on a regular basis, because new

data may change existing annotations. The 3D-GENOMICS system is a prototype

that is currently used in-house only, and substantial development and testing has

to be done to distribute this system to other institutions. However, the system is

suitable for the distribution of the run objects that perform the analyses over a large

computer grid allowing for frequent annotation updates.

http://www.openpbs.org
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Figure 3.9: Flow of the 3D-GENOMICS annotation pipeline. The three frames symbolise the
main processing spaces, i.e. the physical location of computers and the execution space of programs
and objects. Database requests (queries, updates and inserts) are symbolised with red arrows. The
submission to a computer that executes the analysis is indicated by the green arrow. Arrows with
a 90 degree angle indicate subsequent actions or a result of the previous step. Inner rectangles
show the private execution spaces of scripts and objects. See text for details.

3.8 Discussion

The strength of the 3D-GENOMICS system has been discussed in the above sec-

tions. In particular the distribution of the Run objects for parallel processing is

an important aspect. The straightforward implementation of new tools is certainly

another strength. However, there are restrictions and problems with the current

implementation, the more important of which are discussed below.
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3.8.1 Restrictions of the current implementation

Although it is relatively simple to add new sequences to the 3D-GENOMICS data-

base and to run these through the processing pipeline, regular updates are not yet

supported. The main reason is that a single new protein sequence may change PSI-

BLAST existing results for old query sequences (PSI-BLAST is a major component

of the analysis pipeline), because it may provide intermediate sequence hits that

are needed to detect for example a distant homology to a previously undetected

family of proteins. Therefore on every database update one would have to re-run

PSI-BLAST for all previously analysed proteins. This approach is time consuming

and impractical, and in fact results may change for only a few proteins.

The effect of new sequences on PSI-BLAST PSSMs has to be studied to develop

heuristics that will estimate the change of the path through evolution. Another

probably simpler approach may be to compare the PSSM of an already processed

sequence with new protein sequences. This is a relatively fast method that can be

implemented via IMPALA or RPS-BLAST (part of the NCBI BLAST software).

The summary steps in the 3D-GENOMICS pipeline discussed in section 3.5 have

to be re-run whenever the underlying ‘atomic’ data such as alignments changes. The

genome wide summary does have a rather long runtime (several hours for the human

proteome), and is mainly restricted by disk I/O of the database server, so that these

runs cannot be distributed over a large number of clients to perform these runs in

parallel. For the sake of speed, some parts of the database may have to be mirrored

on different database servers, and the new concepts for fast GenomeSummary up-

dates should be developed.

A version of the 3D-GENOMICS database that can be updated frequently may

also need a history to keep track of changes. The definition of the gene of a pro-

cessed sequence may change, and the old version of the gene should be marked as

‘old’, but should still be available to track changes.

There is a conceptual error in the 3D-GENOMICS database that can cause prob-

lems when a new sequence enters the database that is 100% identical to an existing

sequence that has already been processed. The tag list of the protein description (see

3.1) is then updated by e.g. ‘mouse’ and may finally contain the keywords ‘human’
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and ‘mouse’ (i.e. human and mouse have an identical sequence). Because of the

relations between Pseq, Pdesc and Tag there is only one set of results from an anal-

ysis for this sequence (a protein sequence is stored only once, and several PseqRuns

can refer to the same sequence). If one wants to delete all results for human, then

the result for this sequence also get deleted for mouse. This systematic error has

not yet affected the 3D-GENOMICS system because there are only very few 100%

identical sequences between the processed genomes. Also, for the analysis described

in chapter 4 all genomes have been processed with the same parameters and no data

has been deleted. The problem also implies that only the non-redundant protein

sequence set is stored, so that a few 100% protein duplications within a genome are

ignored. This affects the analysis in chapter 4 because sequence features such as

SCOP domains are only counted for each distinct protein sequence.

It is sensible to process identical protein sequences only once, even if these corre-

spond to different genes. However, identical protein sequences from different genes

have different accession numbers in the public databases, and the 3D-GENOMICS

API should be modified so that the protein based analyses (PseqRuns) refer to an

accession number rather than a distinct sequence. The API may handle cases for

identical sequences, so that a requested analysis will not be run if it was already

run with the same analysis parameters for another accession number referencing the

same sequence. These ‘virtual’ sequence runs may be managed by reference coun-

ters, the results of an analysis only get physically deleted if the reference counter

for the accession numbers to this run is zero.

3.8.2 Suggestions for future developments

Some technical and rather general enhancements should be considered for the future:

• Integration of InterPro (see 1.2.3). The collection of features that can be re-

trieved from 3D-GENOMICS via a run object for a protein sequence are very

similar to the different descriptors for an InterPro entry. The InterPro Scan

software is distributed from the EBI and contains all required programs and

source databases. The baseline annotation can then be performed via InterPro,

and 3D-GENOMICS can be focused on more specific tasks such as detection
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of remote homologues, structural characterised domains and proteome com-

parison.

• Export of all 3D-GENOMICS objects in XML format to provide the full reper-

toire of data in an state of the art format that can be distributed. The BLAST

software from the NCBI can write its output in XML format. General han-

dling of XML as an output format from the analysis programs and as a data

source for sequence and annotation databases (InterPro and possibly GenBank

in future) will ease the integration of other resources and data exchange.

• Management of free text information to enhance annotation. This can be ini-

tially approached by extracting text from different categories of the available

source databases, and in particular the comment blocks of SwissProt entries

which usually give manually curated detail about the biochemical and biolog-

ical function of a protein. Abstracts from the scientific literature as well as a

gene ontology may also be integrated to support annotation.

• Although the summary steps described in section 3.5 provide fast ‘top-down’

access (from an overview of the annotation down to more detail) to the results,

it is useful to implement a non-normalised version of the database that can

be generated from the normalised main database (the production database).

Such a data warehouse may allow even faster access for research purposes and

may be distributed to other bioinformatics sites.

• As mentioned in section 3.6, the data of an object is decomposed and stored

in several tables of the database. On every level of inheritance for which data

is stored in the database (e.g. for a BlastHit object the levels are Feature and

Alignment) the data that belongs to a particular inheritance level is also ex-

clusively managed on this level (generally by the particular class or baseclass).

E.g. retrieval of a BlastHit requires three database requests: one to retrieve

the feature data, one to retrieve the alignment data and one to retrieve the

blast hit specific data. All three levels are logically linked by a common Fea-

tureId. It may be much faster to create an object by using a single database

request via a single join of the required tables. Each (base) class would have

to contribute statements to the construction of an appropriate SQL statement

that will join the required tables and to select the table attributes.
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3.8.3 Other automated annotation systems

Automated annotation systems have been developed previously by others. In general

these systems provide web based access and do not provide an external API that can

be used for the development of specific research tools. However, these systems may

be installed locally under special license agreements with the authors. The major

goal of most public annotation systems is to support genome sequencing projects,

and to provide up-to-date annotations, whereas the 3D-GENOMICS architecture is

designed to provide consistent, but often not up-to-date, annotations that are easily

accessible for large scale comparisons. In addition it should be pointed out that

3D-GENOMICS in its current version is maintained and developed by basically a

single person mainly for the research described in this thesis, and the annotation

systems described below are maintained by a team of authors often dedicated to

maintenance and development of the system. Below a selection of popular annota-

tion systems are introduced.

The ENSEMBL system (http://www.ensembl.org, Hubbard et al. (2002)) from

which the protein data of the human genome is used within this work, provides an

annotation system based on a MySQL database back-end with an object-oriented

software interface written in Perl and C. ENSEMBL has been developed for the

annotation of the human genome. Special versions for other ongoing metazoan

genomes are also available. The ENSEMBL architecture is fully open and provides

all data and software including a stable API. ENSEMBL is developed by a broad

bioinformatics and biology community.

Despite the general management and dissemination of the human genome data,

a special focus is the reliable identification of genes. On top of gene predictions

with several levels of evidence, a baseline protein sequence annotation is performed.

This includes the assignment of InterPro families and domains to human proteins.

Some structure based analysis of human proteins (Gough & Chothia, 2002) is linked

via DAS (Distributed Annotation System, Dowell et al. (2001)). Unlike the 3D-

GENOMICS API that encapsulates the data processing within the biological objects

(the Run objects), the data processing (for example BLAST sequence comparisons)

in ENSEMBL is performed by mainly stand alone scripts that are separate from the

biological objects (personal communication with Ewan Birney).

http://www.ensembl.org
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GeneQuiz (http://jura.ebi.ac.uk:8765/ext-genequiz/, Scharf et al. (1994); An-

drade et al. (1999)) is one of the first published large scale annotation systems,

that can be run remotely via the web. The input for GeneQuiz is a protein se-

quence or set of protein sequences for which the system runs several sequence anal-

ysis tools, including homology searches. A notable feature is the reasoning engine

within GeneQuiz to accept or reject results contributing to an annotation. Different

analysis tools and integrated source databases have different trust levels. Functional

information from text descriptions is extracted for homologous sequences from the

different source databases at different confidence levels, and together this informa-

tion is used to place a protein into a functional category. GeneQuiz also provides

structural models for proteins with homologues of known structure.

Magpie (Multipurpose Automated Genome Project Investigation Environment,

http://genomes.rockefeller.edu/magpie/, Gaasterland & Sensen (1996)) is designed

for (mainly prokaryotic) genome sequencing projects. The system takes DNA se-

quences such as DNA contigs (unassembled genomic DNA from cloning vectors) as

input. Magpie guides the genome project from its beginning on, by performing gene

predictions, detection of DNA frame shifts, homology searches on the protein and

DNA level and suggests which pathways may exist in the genome. New tools can

be integrated. The system is installed locally, and the analysis tools may be either

installed locally or remote, in which case most data exchange is via an automated

e-mail service. The Magpie system is configured and customised via a set of config-

uration files, so that no code editing is necessary.

Magpie stores the results of any analysis in flat files. Most of the infrastructure

for data management is implemented in Perl. The results are then converted into

Prolog facts that are digested and converted into ‘deduced facts’ from which HTML

formated reports are generated. The Prolog rules for example to determine a coding

region may be customised. Magpie also allows privileged users to manually edit and

override automatically generated results

.

PEDANT (Protein Extraction, Description and ANalysis Tool, http://pedant.-

mips.biochem.mpg.de, (Frishman et al., 2001)) initially focused on protein based

annotation. However, in version 2, many DNA based analysis tools such as those

for gene prediction by homology to EST sequences or ab initio gene prediction have

been integrated. PEDANT consists of three main parts: (i) the processing unit

http://jura.ebi.ac.uk:8765/ext-genequiz/
http://genomes.rockefeller.edu/magpie/
http://pedant.mips.biochem.mpg.de
http://pedant.mips.biochem.mpg.de
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to access external databases and tools such as BLAST, (ii) the relational database

(MySQL) for data storage and (iii) the user interface for user queries and data vi-

sualisation. The code for data management and processing is written in Perl and a

part of the user interface is implemented in C++. All external databases such as

the protein sequence databases and all tools are installed locally. Data processing

may be performed in parallel by distributing tasks over a computer farm.

The database scheme of PEDANT is relatively simple, results are stored on two

levels: the raw analysis output is kept as it is (e.g. the output from a BLAST run),

and the parsed and disassembled output is stored, too (storing the e-value, the se-

quence identity etc. in different fields of a table). The results of an analysis are not

mapped across several tables as in the 3D-GENOMICS database.

Since PEDANT is used for genome sequencing projects it implements a system

to manage different versions of annotations and sequence data. The principle for

genome annotation is to perform an automated analysis with relatively loose con-

straints to guarantee a great annotation extent over the whole genome, and then to

allow manual correction of these annotations by accepting or rejecting annotations.

PEDANT provides special user interfaces for manual data checking and correction.

PEDANT was used for SCOP superfamily assignments to more than 300,000

protein sequences.

A popular web based protein sequence annotation system is PredictProtein (http://-

www.embl-heidelberg.de/predictprotein/predictprotein.html, Rost (1996)). The user

can submit a protein sequence or a list of sequences to the server which runs a range

of analysis and prediction software such as transmembrane predictions, homology

and motif searches. Many tools have been integrated in the PredictProtein system.

The meta server facility in PredictProtein allows to submit a sequence automatically

to several other servers that perform a specific analysis such as HMM based sequence

comparisons. Results are formated as plain text or as HTML. PredictProtein is a

service to provide biologists with as much information about a protein as possible,

it is not intended for large scale comparative proteome projects.

Assignments of domains of known structure to proteins of fully sequenced genomes

are provided by the Gene3D system (http://www.biochem.ucl.ac.uk/bsm/cath new/-

http://www.embl-heidelberg.de/predictprotein/predictprotein.html
http://www.embl-heidelberg.de/predictprotein/predictprotein.html
http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
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Gene3D/, Buchan et al. (2002)), that is based on the CATH classification of protein

structures introduced in section 1.4.4. Assignments are based on IMPALA (see sec-

tion 1.3.6) and a set of specialised software to perform the actual delineation of

domain boundaries within multi-domain proteins. Assignments can be browsed and

downloaded over the web.

http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
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Chapter 4

Structural Characterisation of the

Human Proteome

4.1 Summary

This chapter describes an analysis of the encoded proteins (the proteome)

of the genomes of human, fly, worm, yeast and representatives of bacteria

and archaea in terms of the three-dimensional structures of their glob-

ular domains together with a general sequence based study. This work

shows that 39% of the human proteome can be assigned to homologues

of known structure. The estimated extent of functional annotation for

the human proteome is 77%, but only 26% of the proteome can be as-

signed to standard sequence motifs that characterise function. Of the

human protein sequences, 13% are transmembrane proteins, but only

3% of the residues in the proteome form membrane-spanning regions.

There are substantial differences in the superfamily composition of glob-

ular domains of transmembrane proteins between the proteomes that

have been analysed. Commonly occurring structural superfamilies are

identified within the proteome. The frequencies of these superfamilies

enables one to estimate that 98% of the human proteome evolved by

domain duplication, with four of the ten most duplicated superfamilies

specific to multi-cellular organisms. The zinc-finger superfamily is mas-

sively duplicated in human compared to fly and worm, and occurrence of

domains in repeats is more common in metazoa than in single-celled or-

ganisms. Structural superfamilies over- and under-represented in human
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disease genes have been identified. Data and results can be downloaded

and analysed via web based applications at http://www.sbg.bio.ic.ac.uk.

This work has been accepted for publication by Genome Research.

4.2 Introduction

The interpretation and exploitation of the wealth of biological knowledge that can

be derived from the human genome (Lander et al., 2001; Venter et al., 2001) requires

an analysis of the three-dimensional structures and the functions of the encoded pro-

teins (the proteome). Comparison of this analysis with those of other eukaryotic and

prokaryotic proteomes will identify which structural and functional features are com-

mon and which confer species specificity. This work presents an integrated analysis

of the proteomes of human and thirteen other species considering the folds of glob-

ular domains, the presence of transmembrane proteins, and the extent to which the

proteomes can be functionally annotated. This integrated approach enables one to

consider the relationship between these different aspects of annotation and thereby

enhance previous analyses of the human and other proteomes (e.g. Frishman et al.

(2001); Iliopoulos et al. (2001); Koonin et al. (2000), including the seminal papers

reporting the human genome sequence from Lander et al. (2001) and Venter et al.

(2001)).

A widely used first step in a bioinformatics based functional annotation is to

identify known sequence motifs and domains from manually curated databases such

as PFAM/InterPro (Bateman et al., 2002; Apweiler et al., 2001) and PANTHER

(Venter et al., 2001) . This strategy was used in the original analyses of the human

proteome (Lander et al., 2001; Venter et al., 2001). These annotations tend to be

reliable as these libraries have been carefully constructed to avoid false positives

whilst maintaining a high coverage. In the absence of a match to these charac-

terised motifs/domains, functional annotation is derived by homology to previously

functionally annotated sequences. However, transfer of function via homology is

problematic and the extent of the difficulty has been recently quantified (e.g. Devos

& Valencia (2000); Todd et al. (2001); Wilson et al. (2000)). Below 30% pairwise

sequence identity, two proteins often may have quite different functions even if their

structures are similar. Because of this problem, global bioinformatics analyses of

genomes generally do not use functional transfer from distant homologies for anno-

tation. However, specific analyses by human experts still extensively employ this

http://www.sbg.bio.ic.ac.uk
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strategy, particularly as any suggestion of function can be refined from additional

information or from further experiments.

A powerful source of additional information is available when the three-dimen-

sional coordinates of the protein are known. The structure often provides informa-

tion about the residues forming ligand-binding regions that can assist in evaluating

the function and specificity of a protein. For example, recently it has been shown

that spatial clustering of invariant residues can assist in assessing the validity of

function transfer in this homology twilight zone (Aloy et al., 2001). At higher lev-

els of identity, knowledge of structure can assist in analysing ligand specificity and

the effect of point mutations. Valuable tools in exploiting three-dimensional in-

formation are the databases of protein structure, in which domains with similar

three-dimensional architecture are grouped together. Here the structural classifica-

tion of proteins (SCOP) (Conte et al., 2002) is used. SCOP is described in detail in

section 1.4.4. In summary: in SCOP, protein domains of known structure that are

likely to be homologous are grouped by an expert into a common superfamily based

on their structural similarity together with functional and evolutionary considera-

tions. SCOP is widely regarded as an accurate assessment of which domains are

homologues. However, SCOP remains partially subjective and one cannot exclude

the possibility that two domains placed within the same superfamily only share a

common fold due to convergent evolution and therefore are not homologous.

The above considerations have led to focusing the analysis on the following three

objectives:

• To estimate the extent to which the known proteomes can be annotated in

terms of structure and function and how reliable these annotations are con-

sidered to be.

• To place the occurrence of particular SCOP structural superfamilies in terms

of their biological and species-specific contexts.

• To derive evolutionary insights from frequency based analyses of homologous

SCOP domains in terms of expansion in different species.
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4.3 Strategy for structural and functional anno-

tations

For details of materials and methods see section 4.6 on page 159.

Protein sequences from the human genome and from thirteen other species were

analysed. The main strategy was to use the sensitive protein sequence similarity

search program PSI-BLAST (Altschul et al., 1997) to scan each protein sequence

against a database composed of a non-redundant set of sequences, including se-

quences of SCOP domains and, to ensure up-to-date coverage, each protein entry of

the PDB (Berman et al., 2000).

A sequence match to an entry of the PFAM domain library Bateman et al. (2002)

was considered as a functional annotation (excluding families of unknown function).

In the absence of a match to these characterised motifs/domains, one needs to eval-

uate functional annotation via transfer from homology. To represent this approach

computationally, functional annotation is simply considered if a homologue contains

some textual description of function (see legend to figure 4.1, and section 3.5). Thus

the total of the proteome that can be functionally annotated is the sections that are

assigned to a PFAM domain or, if no assignment to PFAM, that are homologous to

a protein with a text functional description.

4.4 Results

4.4.1 Status of structural and functional annotations

Figure 4.1 shows the annotation status of the proteomes expressed as the fraction of

the total residues in each proteome. The residue fraction is used in order to include

situations when only part of a protein sequence is annotated, since one cannot quan-

tify this as a fraction of domains because one does not know the number of domains

in un-annotated regions. 39% of the human proteome can be structurally annotated

from either having a known protein structure or via a PSI-BLAST detectable ho-

mology to a known structure. This percentage is higher than that for yeast, fly and

worm and is comparable to the coverage of many bacteria and archaea. A further

38% of the human proteome falls into the category of functional annotation without
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known structure. Since nearly every protein structure has some functional annota-

tion, the total functional annotation of the human proteome is 77%. The remainder

are (i) either homologous to another protein of unknown function or (ii) potentially

globular orphan regions without any detectable homology or (iii) an un-annotated

non-globular region (a region of low amino acid residue complexity, coiled-coil or a

transmembrane segment).
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Figure 4.1: Annotation status of the proteomes. Coverage for each species is reported as the
fraction of the residues in the proteome that are annotated. This allows for partial coverage of
any sequence. Structural annotation is a homology to a sequence or domain of known structure.
Functional annotation is when there is no structural annotation but there is an homology to
an entry from SwissProt or PIR that has a description other than those that contain any of
the following words: ‘hypothetical’, ‘probable’, ‘putative’, ‘predicted’. Any homology denotes a
sequence similarity to a structurally or functionally un-annotated protein, such as one described
as hypothetical. See section 3.5 for a more detailed description of the classification of homologues.
Non-globular denotes remaining sequence regions that were predicted as transmembrane, signal
peptide, coiled-coils or low-complexity. Remaining residues are classified as orphans, i.e. un-
conserved potentially globular regions.
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This work also considers how many protein sequences can be fully annotated. To

allow for gaps >95% of a particular sequence are required to be covered without gaps

of more than 30 residues (figure 4.2). The fraction of the human protein sequences

that are fully annotated in terms of structure is only 15%. A further 14% of the

human protein sequences are fully annotated in terms of function but not structure.

The fraction of fully covered annotated sequences for human is much higher than

for worm, fly and yeast. Another 8% of the human sequences are fully covered by

hypothetical sequences or sequences of unknown function.
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Figure 4.2: Structural and functional annotations that cover the entire protein sequence. For
structural annotation >95% of the sequence is required to be structurally annotated, and there
was no un-annotated segment of >30 residues. Functional annotation is evaluated after assigning
structures and requires the same length constraints. Finally, any homologue (including those of
unknown function) is assigned to the remainder (with the same sequence length constraints, also
see figure 4.1 for a definition of any homology).

The accuracy of the above analysis is dependent on the quality of the gene pre-
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diction. For the eukaryotic genomes analysed, particularly for the human genome,

this is problematic, and it is anticipated that new genes will be identified and some

present assignments modified. The human proteome that is subject to the analysis

described here is based on gene predictions that are confirmed by matches to ESTs

or homologues in other species (see http://www.ensembl.org and Hubbard et al.

(2002)). This use of homology would contribute to the high level of structural and

functional annotation, and if additional genes were identified the values for coverage

probably would be somewhat lower. An upper estimate of the magnitude of this

problem can be obtained by noting that the human genome has 6% by residue of

orphans. In worm this figure is 17%, and it is considered that most genes have

been identified in this genome (Reboul et al., 2001). Similar figures for orphans are

found in yeast and fly. If one assumes that the true figure for orphan proteins in

the human genome is 17%, then any other section of the annotation as shown in the

bar-charts (e.g. of structural coverage) should be reduced to 83/94 (i.e. 0.88). Thus

the structural coverage is reduced from 39% to 34%. In practise the true value is

expected to lie between these two extremes.

However even for prokaryotes, errors in gene prediction can affect the survey

that is described here. For example, the proteome of the archaea Aeropyrum pernix

contains the largest fraction of orphan regions. This result may be biased because

the gene prediction in Aeropyrum pernix produced many very short questionable

ORFs (Skovgaard et al., 2001).

4.4.2 Reliability of annotation

The reliability of homology model-building depends on the level of sequence identity

between the protein of known structure with that of the sequence for which one wants

to build a model (Bates & Sternberg, 1999; Sanchez & Sali, 1998). Figure 4.3 shows

the different level of reliability for structural modelling. Only 2% of the residues in

the human proteome are from domains for which there is an actual crystal structure

or which share >97% sequence identity with an experimental structure. However,

11% are within the identity range 97% to 40%, and homology models are likely to

be of sufficient accuracy to place residues reasonably accurately. Between 40% and

30% sequence identity, modelling becomes error prone, but advances in modelling

techniques may allow the inclusion of this homology band for reliable modelling in

http://www.ensembl.org
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the future. Below 30%, modelling is likely to reveal only general features of the fold.
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Figure 4.3: Reliability of structure assignments. Homologies are dissected into sequence similarity
bands. The >97% identity effectively reports a match to an experimentally determined structure
or to one that differs in only a few residues. Structures based on these annotations are accurate.
The next band down to 40% sequence identity denotes annotations for which models can be
constructed that are expected to be reasonably accurate (Bates & Sternberg, 1999; Sanchez &
Sali, 1998). Between 40% and 30% sequence identity automated modelling is difficult. Below 30%
identity, the sequence alignment suggested by the annotation is expected to have many errors and
the structural annotation primarily provides an indication of the 3D fold.

Figure 4.4 provides an assessment of the reliability of functional annotation. A

match to a PFAM domain (excluding domains of unknown function) is considered

to constitute a reliable functional annotation. For the human proteome 26% of the

residues can be assigned to PFAM domains (dark and light red bars in figure 4.4),

this includes 19% for which a structural assignment can be made, which often will

assist in functional annotation (dark red bars). Next, those proteins were identified

for which the closest homologue that has a text functional description (see legend to
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figure 4.1) shares at least 30% sequence identity. This cut-off was chosen since stud-

ies have shown that below this value homologues often have diverged to radically

different functions (Devos & Valencia, 2000; Todd et al., 2001; Wilson et al., 2000).

A total of 41% of the proteome could potentially be functionally annotated based on

a homology to a protein with at least 30% sequence identity (dark and light green

bars). This 41% contains 15% without any match to PFAM but with an assigned

structure (dark green bars) that could help to refine the proposed annotation. A

further 8% of the proteome is below the 30% identity cut-off for functional annota-

tion (blue bars). Of this fraction, 50% (4% of the total proteome, dark blue bars)

has a structural homologue that may assist in assessing the validity of functional

transfer. However the remaining 4% of the proteome with functional assignment

below the 30% cut-off is without any structural information (light blue bars), and

annotations for these sequence regions must be considered highly tentative.

4.4.3 SCOP superfamilies

Table 4.1 reports the commonly occurring SCOP superfamilies in human, fly, worm,

yeast and average values for archaea and bacteria. Complete tables can be accessed

from the following web-site: http://www.sbg.bio.ic.ac.uk.

First the commonly occurring superfamilies in the human proteome are consid-

ered. The most common domain in human is the C2H2 classic zinc finger, which

occurs four times more often than the next most common domain, the immunoglob-

ulin. The P-loop SCOP superfamily involved in nucleotide triphosphate hydrolysis

is the fourth most common in human and second in fly, but the most common in the

other analysed proteomes. In general, the commonly occurring superfamilies in the

human proteome reflect the eukaryotic and multi-cellular organisation. Commonly

observed superfamilies involved in or part of cell-surface receptors, protein-protein

or cell-cell interaction, signalling or cytoskeleton structure are represented by su-

perfamilies such as: immunoglobulin, EGF/laminin, fibronectin, cadherin, protein

kinase, homeo-domain, tetratricopeptide repeat, spectrin repeat, PH-domain and

SH3-domain.

In general, the fly and worm have similar rankings of the common superfamilies

to those in human, reflecting the multi-cellular organisation. There are, however,

http://www.sbg.bio.ic.ac.uk
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Figure 4.4: Reliability of functional annotation. Functional annotation is distinguished between
reliable (30% sequence identity) and ‘fuzzy’ (< 30% sequence identity). The fractions are cumu-
lative, i.e. regions that are assigned to a PFAM domain and a structure are counted first, then
regions for which a PFAM domain could be assigned but no structural assignment can be obtained
are counted. See text for details.

some differences. The c-type lectins are at rank 26 with 149 domains in human

but at rank 5 with 310 domains in worm. C-type lectins have a wide spectrum

of functions associated with carbohydrate binding and occur membrane bound and

soluble. The high occurrence of c-type lectins has previously been noted by Koonin

and co-workers (Koonin et al., 2000). However, there has been no explanation for

the abundance of this superfamily in worm. Similarly, the most common DNA bind-

ing domain in worm is the glucocorticoid receptor which is at rank 6 in worm (281

domains) but only at rank 27 (143 domains) in human and at rank 31 in the fly

(69 domains). In contrast to the rank order, the domain frequencies of the top su-

perfamilies in human are generally much higher than the corresponding frequencies
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Human Fly Worm Yeast Archaea Bacteria

SCOP superfamily N R N R N R N R N R N R

Classic zinc finger, C2H2 5092 1 1096 1 190 10 74 9 - 269 - -

Immunoglobulin* 1214 2 483 3 457 2 8 91 1 135 4 94

EGF/Laminin 1192 3 320 4 413 4 - - - - - -

P-loop containing nucleotide

triphosphate hydrolases*

847 4 575 2 516 1 408 1 126 1 168 1

Fibronectin type III* 842 5 247 7 222 8 1 301 - - 1 237

Cadherin 608 6 222 10 135 21 - - 3 72 - -

RNA-binding domain 587 7 282 5 199 9 128 3 - - - 420

Protein kinase-like (PK-like)* 557 8 271 6 434 3 142 2 3 72 5 82

Homeodomain-like 334 9 144 18 145 17 32 20 1 221 17 16

Spectrin repeat 327 10 227 9 150 13 - - - - - -

PH domain-like* 327 10 140 19 100 31 23 29 - - - -

SH3-domain 304 12 105 23 70 37 29 23 - - - 454

EF-hand* 284 13 163 14 120 26 23 29 - - - 420

Ankyrin repeat 278 14 120 21 128 24 31 22 - - 1 342

Complement control mod-

ule/SCR domain

277 15 57 38 52 43 - - - - - -

PDZ domain-like 265 16 103 24 89 32 6 120 1 169 6 64

Ligand-binding domain of low-

density lipoprotein receptor

247 17 196 12 143 18 3 194 - - - -

Tetratricopeptide repeat

(TPR)*

215 18 171 13 115 27 98 5 4 48 16 19

RING finger domain, C3HC4 207 19 108 22 122 25 33 19 - - - -

Trp-Asp repeat (WD-repeat) 193 20 198 11 142 19 114 4 2 121 3 157

C2 domain (Calcium/lipid-

binding* domain, CaLB)

186 21 68 32 89 32 32 20 - - - -

NAD(P)-binding Rossmann-

fold domains*

177 22 150 16 130 23 88 7 27 3 72 2

ARM repeat* 177 22 137 20 105 28 80 8 1 221 - -

SH2 domain* 161 24 59 37 72 35 8 91 - - - -

Thioredoxin-like* 152 25 148 17 148 14 50 12 8 21 18 13

C-type lectin-like* 149 26 40 53 310 5 - - - - - 454

Glucocorticoid receptor-like

(DNA-binding domain)*

143 27 69 31 281 6 14 59 - - - -

ConA-like lectins/glucanases* 136 28 66 34 105 28 8 91 1 169 3 157

Actin-like ATPase domain* 135 29 65 35 38 56 58 10 2 97 12 26

Numer of distinct proteins in

proteome

28,913 13,922 16,323 6,237 2,176 2,789

Numer of distinct superfami-

lies in proteome

546 518 482 434 328 499

Table 4.1: Commonly occurring SCOP superfamilies in the proteomes. R is the rank of a super-
family within a proteome and N is the frequency of domains within this superfamily. * Denotes
that several PFAM families (and hence several InterPro families) are included within the single
SCOP superfamily (this association was evaluated by searching each SCOP superfamily against
PFAM using the HMMer program, see ‘Methods’ section for details). The number of distinct
proteins and the number of domains per superfamily (N) for archaea and bacteria are averages
whereas the number of distinct superfamilies are totals over the species (including seven bacterial
species and three for species from archea).
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in fly and worm, whereas the frequencies in fly and worm are often similar. The

human proteome is roughly double the size of that of fly or worm, but for several of

the most common superfamilies in human (in particular within the first six ranks,

except for the P-loop) a scaling factor of more than two is observed. At lower ranks

the ratio is generally around two. The first superfamily that occurs with roughly

the same frequency in human, fly and worm is the thioredoxin-like domain (152,

148, 148 domains respectively). Proceeding down the rank order of occurrence in

human, the first superfamily with a lower frequency of domains in human than in

another multi-cellular eukaryote is the c-type lectin (see above).

There are, however, major differences in rank order for the single-celled organ-

isms. Several of the superfamilies in table 4.1 have similar ranks in human, fly and

worm, whereas the rank in yeast often differs markedly (e.g. the immunoglobulin).

Domains of superfamilies found in cell-cell interaction proteins and cell surface pro-

teins such as the fibronectin and cadherin are not found or only occur infrequently

in the proteomes of the single-cellular organisms. In bacteria, and especially in

archaea, the top ranks are mainly occupied with superfamilies associated with en-

zymes. The most common DNA binding domain in bacteria and archaea is the

winged helix-turn-helix motif (not included in table 4.1).

The abundance of several superfamilies in metazoans that are absent or have

relatively low domain frequencies in yeast leads to conclusions different to those re-

cently published for the S. pombe genome (Wood et al., 2002). The work by Wood

et al. (2002) shows that there are many new protein sequences in yeast (S. pombe

and S. cerevisieae) compared to prokaryotes, but only a few new sequence families

in metazoans compared to yeast (i.e. those proteins found in metazoans only). In

this work 84 SCOP superfamilies present in metazoa and yeast that are not found

in any of the processed prokaryota, and 113 new superfamilies in metazoa that are

not found in yeast (data not shown) were identified. The analysis described in this

work is based on the identification of structural domains rather than closely re-

lated full-length sequences which allows members of even diverse superfamilies to

be found. These results suggest that in invention and expansion on the level of

structural domains there may well be a bigger step from single-cellular eukaryotes

to multi-cellular organisms than implied by Wood et al. (2002).

Domains forming a particular SCOP superfamily are identified on the basis of
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both their similar structure and function. In contrast PFAM, InterPro and PAN-

THER are primarily sequence and function based families. Because homologies can

be recognised from structural conservation that are undetectable by sequence based

methods, one SCOP superfamily can include several PFAM, InterPro or PANTHER

families (also see the legend for table 4.1). In addition, SCOP is a structural domain

database whereas PFAM identifies a single sequence motif that can be repeated to

form a structural domain. For example, PFAM describes each of the β-sheet mo-

tifs of a WD-repeat by itself whereas SCOP considers the entire barrel of seven of

these motifs as a domain. Thus there are several differences between the ranks of

commonly occurring SCOP domains compared to the results from sequence based

analyses (Lander et al., 2001; Venter et al., 2001).

The results of this work are in broad agreement with similar analyses by others

(Frishman et al., 2001; Iliopoulos et al., 2001; Koonin et al., 2000; Gough & Chothia,

2002; Lander et al., 2001; Venter et al., 2001), in particular with results from those

describing the distribution of SCOP folds and superfamilies in different genomes.

Differences in methodology, different confidence cut-offs and different sequence data-

bases used for the analysis do not allow a direct comparison of domain frequencies

and annotation coverage in proteomes. However, the relative rank order for folds

and superfamilies within a proteome are suitable for a comparison between different

work. Recent work from Gough & Chothia (2002) using hidden Markov models

for SCOP superfamilies shows similar ranks for the top ten superfamilies in the

processed genomes. The zinc-finger is the most abundant superfamily in human fol-

lowed by the immunoglobulin. Although results from the HMM superfamily analysis

by Gough & Chothia (2002) on a more recent version of the human genome (based

on ENSEMBL-4.28.1, see http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/) give

different total numbers compared to this work, the general trend (i.e. ranks of su-

perfamilies) is stable even for the different interpretations of the human genome. It

should be noted that the analysis described here has a focus on the globular parts of

the proteomes, and no PSI-BLAST homology assignments for the membrane all-α

SCOP superfamily were obtained. However, BLAST assignments for close homo-

logues of this superfamily are included in the analysis of this work (see section 4.6,

Methods, for details). Therefore this superfamily is found far further down the list

lower in the results described here compared to Gough & Chothia (2002), who con-

structed special HMMs for this superfamily.

http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/
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Some of the top superfamily-rankings from this work are different to those in

PartsList (Qian et al., 2001b), which reports the EGF/laminin superfamily at rank

one for C. elegans (rank four in this analysis) and the P-loop at rank eight, com-

pared to rank one in the results of this work. The HMM superfamily analysis of the

worm from Gough & Chothia (2002) ranks the P-loop at position two, following the

membrane all-α superfamily.

Wolf et al. (1999) assigned SCOP-1.35 folds to several prokaryotes, yeast and C.

elegans using an automated processing pipeline similar to the system used here (see

section 3). Folds of coiled-coiled domains and immunoglobulins and those domains

mainly found in viruses were omitted from their analysis. The top ranking SCOP

folds for archaea are similar to the ranks from this analysis, but there is more varia-

tion in ranks for bacteria, possibly due to differences in the set of bacterial genomes

that was chosen for this work. As shown by Wolf et al. (1999), the analysis de-

scribed in this work also finds more agreement between archaea and bacterial folds

compared to eukaryotic folds. The fold analysis by Wolf et al. (1999) was refined

(Koonin et al., 2000) by including the IMPALA program (Schaffer et al., 1999) into

the processing pipeline.

The results for M. genitalium (MG) and M. tuberculosis (TB) reported in chap-

ter 2 differ from the results described in this chapter. Here, 46% and 43% of all

residues in MG and TB respectively can be assigned to homologues of known struc-

ture compared to only 29% in both proteomes from the analysis reported in chapter

2. However, the analysis described here was carried out in 2001, and the analysis

from chapter 2 was from 1998 and 1999. The main reason for the much higher cover-

age is the growth of the protein structure and sequence databases during this period.

In 1999, there were 11,364 structures in the PDB (in less than 600 SCOP super-

families) compared to 16,973 structures (in more than 1,000 SCOP superfamilies)

in 2001 (see the database statistics at http://www.rcsb.org). The non-redundant

protein sequence database grew from about 300,000 proteins to more than 600,000

proteins between the year 1999 and 2001. New protein folds have entered the data-

base, and to some extent existing classifications have been revised.

The rank order of SCOP superfamilies based on SCOP version 1.37 from the

analysis in chapter 2 are similar to those from the analysis based on SCOP 1.53 (the

analysis described in this chapter), but the domain frequencies increased. Especially

http://www.rcsb.org
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the number of identified P-loops increased from 20 to 69. Many new members of

the P-loop containing nucleotide triphosphate hydrolases superfamily increased the

coverage of this superfamily in the proteomes of MG and TB. In SCOP version 1.37

there were only five families within the P-loop superfamily. In SCOP version 1.53

there are fourteen P-loop families. The rank order in the TB proteome shows greater

differences in superfamily rank orders. For example the P-loop changed rank from

10 (36 domain) to 1 (176 domains) when comparing the old with the new analysis.

The NAD(P)-binding Rossmann-fold formerly the most popular superfamily in TB

with 123 domains slipped to rank 2, but still with an increase in absolute frequency

to 142 domains. Nevertheless, as mentioned above (page 130), the rank order of

superfamilies in different versions of the human proteome has not changed markedly.

This brief comparison between versions of a similar analysis highlights the impact

of data growth and the importance of the continuous increase in the experimentally

determined repertoire of protein structures, including a refinement and diversifica-

tion of already known folds with new family members. It is important to monitor

and benchmark the changes of structural and functional coverage in genomes to

refine existing results. The 3D-GENOMICS system described in chapter 3 is a step

toward this goal.

4.4.4 SCOP superfamilies specific for phylogenetic branches

Table 4.2 presents SCOP superfamilies that occur within just one species or set of re-

lated species but not in any of the other organisms analysed. To identify species not

included in the fourteen genomes that were analysed in this work, each member of a

superfamily that is potentially unique to one of the analysed genomes was compared

to the non-redundant sequence database using PSI-BLAST (with the parameters de-

scribed in the method). This database contains more than 30,000 species. In table

4.2 any superfamily that occurs less than four times in a particular branch (human,

fly, worm, yeast, bacteria, archaea) is excluded to prevent erroneous inferences due

to the inherent difficulties of automated annotation. This information identifies bi-

ological functions potentially specific for one branch of life.
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SCOP Superfamily N R Functional description

Human

MHC antigen-recognition domain 57 62 Immune system

Interleukin 8-like chemokines 48 71 Immune system, growth factors

4-helical cytokines 47 75 Immune system, diverse range of interferons and inter-

leukins

beta/gamma Crystallins S/yeast killer

toxin

20 144 Eye lens component

Serum albumin 19 150 Major blood plasma component

Colipase-like 11 202 Enzyme regulation for pancreatic lipases, development

RNase A-like 8 237 Different ribonucleases found in pancreas, eosinophil gran-

ules and involved in angeogenesis

PKD domain 7 260 Possibly involved in extra-celluar protein-protein interac-

tion

Defensin-like 7 260 Small anti bacterial, fungal and viral proteins

Uteroglobin-like 5 294 Binding of phospholipids, progesterone, inihibits phospho-

lipase A2 (involved in metabolism of biomembranes)

Midkine 4 328 Growth factors

Fly

Insect pheromon/odorant-binding proteins 26 81 Hormone related, sex recognition

Scorpion toxin-like 6 220 Drosomycin and defensin, antibiotic, fungicide

Worm

Plant lectins/antimicrobial peptides 4 234 Anti microbial peptides, pathogen response, fungicides.

Homologous to plant proteins.

Osmotin, thaumatin-like protein 4 234 Same description as for lectins above.

Yeast

Zn2/Cys6 DNA-binding domain 53 11 Transcription factors

DNA-binding domain of Mlu1-box binding

protein MBP1

4 155 Transcription factors

Bacteria

TetR/NARL DNA-binding domain 112 19 Transcription factors

IIA domain of mannitol-specific and ntr

phosphotransherase EII

28 99 Carbohydrate transport system: part of

phosphoenolpyruvate-dependent sugar phosphotrans-

ferase system (PTS)

Prokaryotic DNA-bending protein 18 157 Bacterial histone like proteins

Zn2+ DD-carboxypeptidase, N-terminal

domain

17 165 Found in enzymes involved in bacterial cell-wall degrada-

tion, possibly peptidoglucan binding domain

Glucose permease domain IIB 17 165 Part of PTS

Regulatory protein AraC 14 182 Part of the transcription regulation of the arabinose

operon

LexA/Signal peptidase 11 211 1. Transcriptional regulation of SOS repair genes, protease

domain of the LexA protein 2. Cleaves the N-terminal

signal peptides of secreted or periplasmic proteins.

Histidine-containing phosphocarrier pro-

teins (HPr)

11 211 Part of PTS

Periplasmic chaperone C-domain 11 211 Assembly of extra-cellular and periplasmic macromolecu-

lar structures

Duplicated hybrid motif 10 224 Part of PTS

Aspartate receptor, ligand-binding domain 10 224 Found in different membrane integral sensor and chemo-

taxis proteins, often associated with kinase domains.

Table 4.2: Superfamilies unique for one of the processed proteomes or group of proteomes. The
functional description is taken from PFAM/InterPro and SwissProt homologues. N and R are the
same as in table 4.1. For Human, fly, worm and yeast the superfamilies with N > 3 and for bacteria
N > 9 are listed.
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Human branch.The three most frequent domains are implicated with immu-

nity, in particular the MHC antigen-recognition domain, interleukin 8-like chemokines

and the 4-helical cytokines. Analysis of results that include the complete sequence

database showed that in addition to mammals the interleukin 8-like superfamily

is also found in sequences from birds and fish, and the MHC antigen-recognition

domain is also found in amphibia. Several of the other domains specific to the

mammalian branch are also involved in immunity - MHC class II-associated invari-

ant chain ectoplasmic trimerization domain and p8-MTCP1 (mature T-cell prolif-

eration). The mammalian defensin is involved in defense against a wide range of

micro organisms, whereas the defensin-like superfamily is also found as neurotoxin

in some cnidaria such as anemonae. At fifth in frequency in the human branch is

serum albumin (19 domains in 19 sequences) that is a major protein component of

blood.

Many of the superfamilies that appear potentially specific for human or other

mammals (i.e. superfamilies that are not found in any of the other 13 processed

genomes) are in fact also found in some viruses, amphibia, reptiles, fish and birds

when considering sequences and species of the complete sequence database (>600,000

sequences and >30,000 species). These include the following frequently occurring

superfamilies: colipase-like for enzyme regulation (particularly required by pancre-

atic lipases) and involved in development; RNaseA-like (also found in Aspergillus)

with different ribonucleases involved in endonuclease function in pancreas, blood

(eosinophil granules) and in angiogenesis; the PKD domain which is possibly in-

volved in extra-cellular protein-protein interaction.

Fly. Insect pheromone/odorant-binding proteins are the most common SCOP

superfamily (which occurs 26 times). The next most common are the scorpion toxin-

like domains which occur as parts of the fungicide drosomycin, and the anti-bacterial

defensin. Thus the insect form of immunity/defense leads to a commonly occurring

branch-specific SCOP superfamily. However, in addition to arthropods, the scorpion

like-toxin and the anti-bacterial defensin are also found in plants.

Worm. Two superfamilies occur with a frequency four (the osmotin, thaumatin-

like proteins and the plant lectins/antimicrobial peptides). These superfamilies are

not found in any of the other 13 proteomes. Both superfamilies are involved in

pathogen response. However, further comparison of these superfamilies with the
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complete sequence database identified close homologues in plants.

Yeast (S. cerevisiae). This is dominated by the Zn-Cys DNA-binding domain

of transcription factors. This family is also found in the recently sequenced genome

of the yeast S. pombe (Wood et al., 2002).

Bacteria. Given the smaller size of bacterial genomes, the superfamilies and

their frequencies from the seven organisms that were annotated in this work were

pooled (i.e. the reported frequencies are the sums of domains in superfamilies from

all seven bacterial proteomes, and not averages). Here, the higher ranking super-

families are discussed. The most frequent domain is a transcription factor - the

tetR/NARL DNA-binding domain (also found in some archaea and algae when

considering the complete sequence database). This is followed by the dimerisation

domain of the AraC protein that is involved in the transcription regulation of that

operon. Third is the superfamily of the DNA-bending protein. Other potentially

specific superfamilies are involved in transport (especially the phosphate transferase

system, possibly also present in fungi). There is one superfamily involved in the

phosphate transferase system, the duplicated hybrid motif, that is also found in

mouse (but not human) as previously noted (Nakamura et al., 1994). In addition

there are superfamilies specific for the cell wall synthesis, with one superfamily, the

Zn2+ DD-carboxypeptidase, that is also found in plants.

Archaea. There are only three species of archaea in the set of organisms that

are included in the analysis described here, and no frequently occurring archaea

specific SCOP superfamilies could be identified.

The general conclusion from this analysis is that three general classes of biological

activity lead to commonly occurring branch-specific superfamilies. These functions

are defense (e.g. immunity), transcriptional regulation and hormone-related sig-

nalling.

4.4.5 Gene duplication

The presence of multiple copies of any particular SCOP domains within the pro-

teome is the result of domain duplication and divergence during evolution, both
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within and between proteins. The extent of this duplication can be quantified:

duplication =

∑
i(Ni − 1)∑
i(Ni)

(4.1)

where Ni is the number of occurrence of domains in SCOP superfamily type i

(Teichmann et al., 1998). This can be estimated from the frequencies of the SCOP

superfamilies in a proteome, using these domains as a sample of the entire proteome.

Note that the value is for domain duplication and is not necessarily a value for the

fraction of the proteome residues that arose from duplication. Figure 4.5 shows that

98% of the human proteome is estimated to arose via duplication. There are 28,913

different peptide sequences in the data set of human proteome, and 23,573 SCOP

domains were identified within these sequences, which belong to only 546 different

SCOP superfamilies with 23,027 duplication events. The figure shows that as the

number of proteins in the genome increases, there is an increase in the extent of

domain duplication from the 55% observed in the smallest proteome (M. genital-

ium) to 98% in the biggest proteome (human). There is a very rapid increase in

the extent of domain duplication in the bacteria and archaea until the smallest eu-

karyote included in this analysis (yeast) is reached. However, one does not observe

a marked difference in the extent of duplication between the largest prokaryote (E.

coli, 4257 peptide sequences) and the smallest eukaryote (yeast, 6237 peptide se-

quences) despite the major differences in the organisation of their genes (in terms

of the presence of introns/exons and of chromosomes). Importantly, since several

different PFAM families are homologues that belong to the same SCOP superfamily,

when the same estimate is made using PFAM one obtains a lower estimate of the

extent of domain duplication in each species.

This estimate of domain duplication relies on two assumptions. First is that

the duplication frequency of structurally characterised domains (i.e. SCOP) is a

representative sample of all proteins in the genomes. This has been analysed for

proteins in the M. genetalium genome by Teichmann et al. (1998) who concluded

that the SCOP superfamilies are representative for the proteins in the genome. How-

ever, a study by Gerstein (1998a) on eight microbial genomes suggested that there

are several differences between the proteins in the PDB and those in the genomes,

including differences in the lengths of the sequences. Nevertheless, the trend of in-

creasing domain duplication with the size of the proteome is the same for the SCOP
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Figure 4.5: Extent of domain duplication in different proteomes. The extent of duplication is
estimated from the frequencies of observing domains in the different SCOP superfamilies is shown
as the fraction of total assigned domains for each proteome. The size of the human proteome is
estimated at the number of protein sequences in the ENSEMBL dataset (2̃9,000). Comparable
results from frequencies of PFAM families are reported.

and PFAM based analysis, suggesting that any bias from using SCOP alone is not

marked. The second assumption is that all the proteins have been identified in the

genome, and one has to estimate the effect of uncharacterised proteins. However,

the worm, where gene prediction is more accurate than in human, and therefore

even rare and orphan protein families are more likely to be identified (Reboul et al.,

2001), yields a value for domain duplication of 95% which is probably a lower esti-

mate of the extent in human.

The values for domain duplication are without a time scale and substantial fur-

ther work is required to estimate the extent of duplications since divergence of the

different phylogenetic branches. Recently Qian et al. (2001a) have developed an
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evolutionary model and estimated the extent of fold acquisition within a species.

Here the extent of duplication in the different species of the ten most frequently

occurring SCOP superfamilies found in the human proteome is considered (figures

4.6 to 4.8). Taking the frequency in humans as 100%, figure 4.6 shows that all of

these ten SCOP superfamilies have been expanded in human compared to all other

species. The greatest expansion from worm and fly to human is for the classic zinc

finger. This suggests the major increase in importance of transcriptional regulation

in humans via zinc-fingers compared to fly and worm. In contrast, the smallest

extent of expansion from prokaryotes to human is for the P-loop that has a central

role in housekeeping metabolism. This smaller rate of expansion is also observed

for another housekeeping superfamily, the RNA-binding domain found at rank three

in yeast. The protein kinase-like superfamily has a markedly bigger expansion in

worm than in fly, and corresponds to 80% of the expansion in human. This may

account for the expansion of certain types of signalling in worm. Note that three

of the superfamilies shown are not found in yeast (EGF/laminin, cadherin and the

spectrin repeat), and one, the fibronectin, is only found once.

These results can be contrasted with an analysis of the top superfamilies in bacte-

ria. Of the top ten, seven are expanded in bacteria between 150% and 350% relative

to human (data not shown). The two superfamilies that are reduced in bacteria

compared to human are the periplasmic binding protein-like II (extra-cellular recep-

tor domains in human and mainly extra-cellular solute binding domains in bacteria)

with 70% and the thiolase-like domain (84%). In human Chey-like transcription

factors could not be found at all.

Figure 4.7 shows the relative domain frequencies (number of observed domains

in a superfamily normalised by the total number of domains in all superfamilies

in the proteome) of the top ten human superfamilies for the processed proteomes.

The 5092 zinc-finger domains that were identified for human comprise more than

20% of the identified domains. Zinc-finger domains have an average length of just

27 residues, and together this corresponds to only 1.5% of the residues in the hu-

man proteome. Compared to the majority of the top ten human superfamilies, the

P-loop decreases its relative abundance from prokaryotes to human. Although the

domain fraction comprised by P-loops is much lower than for the zinc-finger, because

of its average length of 217 residues in human, the P-loop accounts for 2% of all

residues. In yeast and worm the protein kinase-like superfamily seems to have more
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Figure 4.6: Superfamily expansion relative to the human proteome. For the ten most abundant
human superfamilies the superfamily expansion within the other proteomes relative to the human
proteome is plotted as the number of domains in superfamily X in proteome Y divided by the
number of domains in superfamily X in human (times 100). All superfamilies are 100% in human.

importance than in fly and human. In addition the RNA-binding domain, involved

in a range of functions, is more abundant in yeast than in the metazoan proteomes

where this superfamily accounts for roughly the same fraction of domains. The worm

proteome contains relatively more EGF/laminins compared to fly. In general the

relative abundance of the top ten superfamilies in human, except for the zinc-finger,

is similar between the metazoan proteomes. Plotting the top ten superfamilies for

yeast shows a similar trend (data not shown); there are only slight changes in the rel-

ative domain abundance for most superfamilies between the eukaryotic proteomes.

These results imply that in general the most popular superfamilies in a particular

proteome do not comprise a substantially different fraction of the domain repertoire

in other proteomes. Given an increasing number of domains for larger proteomes,
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it may not be a change in relative domain abundance of a set of superfamilies that

leads to specialisation.
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Figure 4.7: Relative expansion of the ten most abundant human superfamilies. For all proteomes
the number of domains in a superfamily is normalised by the number of domains in all superfamilies
for a proteome (multiplied by 100).

In general, domains of superfamilies found at a high rank are often found in re-

peats. Here a repeat is defined as at least two domains of the same superfamily that

are found within the same peptide sequence irrespective of the sequence distance be-

tween these domains. Indeed, the zinc finger is the most repeated domain in human.

The average numbers of repeats for the zinc-finger are 7 (max. 36), 4 (max. 17), 2

(max. 5) and 2 (max. 5) per zinc finger containing sequence for human, fly, worm

and yeast respectively. In fly and worm the most repeated domain is the cadherin

with on average twelve repeats in fly and eight in worm. The most repeated su-

perfamily in yeast is the KH-domain (probably involved in RNA-binding) with four
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repeats on average, and in prokaryotes this is the thiolase-like superfamily (found in

proteins of degradative pathways such as fatty acid β-oxidation) with two repeats

on average.

Considering only the existence (and not the frequency) of a superfamily in a

sequence to exclude the effect of repeats overall just slightly changes the order of

the top ranks of superfamilies. The domain based top ten ranks in human are still

present in the top 22 list that excludes repeats (except for the spectrin repeat at

rank 43). The immunoglobulin, the EGF/laminin and the fibronectin are still within

the top ten (data not shown). Figure 4.8 plots the average number of repeats within

a protein for each of these ten SCOP superfamilies in human. The most notable

feature is that the fly has far more duplicated copies per protein for cadherins (cell

surface) and spectrin repeats (e.g. associated with the cytoskeleton) compared to

human. Both, worm and fly have more repeated copies per protein of fibronectin

and immunoglobulin than human. Overall five of the ten superfamilies are repeated

on average at least twice per sequence in human. The most abundant superfamilies

in yeast and especially in bacteria are not as frequently found in repeats as the most

popular superfamilies in metazoa (data not shown).

In general this implies that repetitiveness on the domain level may play an im-

portant role in the divergence of the metazoan branch from single-cell eukaryotes.

As mentioned above, several of the popular superfamilies in human are associated

with cell-surface functions such as cell adhesion, for which long proteins with regular

structure may be required.

Another analysis of this work considers the number of different domain-domain

associations for the commonly occurring SCOP superfamilies. An association is

taken when two different SCOP superfamilies occur within the same sequence (in-

cluding self association) irrespective of the sequence separation between these do-

mains. For a detailed analysis of pairs of adjacent domains and their phylogenetic

distributions see Apic et al. (2001). Figure 4.9a plots the number of partners for

the ten most common superfamilies in human, figure 4.9b for those in yeast and

figure 4.9c for bacteria (note, that for better scaling of the plots, in 4.9b and 4.9c

only superfamilies are shown that are not already plotted in 4.9a). The general

trend is that the numbers of different associations is roughly similar for the three

multi-cellular eukaryotes.
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Figure 4.8: Average repetitiveness of the ten most abundant human SCOP superfamilies. For
each superfamily the number of domains divided by the number of sequences this superfamily was
found in is plotted for each of the each proteome.

An interesting feature is that there tends to be somewhat more domain pair-

ings in fly compared to worm. Although the protein kinase-like superfamily is more

popular in worm than in fly, and also more than in human when normalised by the

number of domains in the proteome as in figure 4.7, the worm has fewer partners for

this superfamily. In addition the most popular partner for the protein kinase-like

superfamily in human and fly is the SH3 domain with 43 occurrences in human and

14 in fly (partner data not shown); in worm there are only seven such co-occurrences.

The most popular protein kinase-like partner in worm is the adenylyl and guany-

lyl cyclase catalytic domain with a frequency of 24, and 5 in human. In all three

metazoan proteomes the SH2 domain is a frequent partner for the protein-kinase

like superfamily.
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The number of partners for EGF/laminin domains decreases from worm to fly,

but in human there are more partners for this superfamily than in worm. A frequent

domain partner for EGF/laminin domains in worm is the c-type lectin (found 22

times) that has been mentioned above (see section ‘SCOP superfamilies’), which is

not a partner for EGF/laminin domains in the fly but is found as an EGF/laminin

partner 25 times in human.

The immunoglobulin superfamily has more co-occurrences in fly than in worm

and human. In fly this superfamily combines for example with di-copper-centre-

containing domains that are also found in human (but not as a partner of im-

munoglobulins). Also the hemocyanin N-terminal domain, absent in human and

worm, is found in combination with immunoglobulins. In fly the hemocyanin N-

terminal domain, the di-copper centre-containing domain and the immunoglobu-

lin are in fact found together in sequences that belong to the invertebrate copper

containing oxygen transport proteins and larval storage proteins (InterPro family

IPR000896). In human a popular partner for immunoglobulins is the MHC antigen-

recognition domain which is not found at all in fly and worm. However, in human, fly

and worm the fibronectin type III is the most common partner for the immunoglob-

ulin (and vice versa) which may be the reason why these two superfamilies follow a

similar trend in figures 4.6 to 4.8 (relative domain abundance and repetitiveness).

Figure 4.9b shows the top ten superfamilies in yeast. Only the tetratricoidpeptide

repeat, a domain probably involved in a wide range of protein-protein interactions,

expands its domain partner repertoire in a step from yeast and worm to fly and to

human. The other superfamilies have similar frequencies in the three metazoans.

Figure 4.9c shows that all the popular superfamilies in bacteria have markedly

fewer co-occurrence partners in archaea, although seven of these superfamilies are

also found in the top ten superfamilies in archaea (data not shown). With 27 part-

ners the Rossmann-fold, involved in a range of enzyme activities, has more partners

in bacteria than in any of the other processed proteomes. However, the most fre-

quent superfamily partners for the Rossmann-fold are similar between bacteria and

metazoans (data not shown). In worm five of the popular bacterial superfamilies

have an increased number of partners compared to yeast, fly and human, possibly

reflecting a closer phylogenetic relationship between worm and bacteria.

http://www2.ebi.ac.uk/interpro/IEntry?ac=IPR000896
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Figure 4.9: SCOP superfamily partners. The plots show the number of different SCOP super-
families that are found together in the same sequence with a given superfamily, including the
superfamily itself and irrespective of the order or the sequence space between domains. This im-
plies that at least two domains have to be identified in a sequence. Superfamily partners for the
ten most abundant superfamilies in human (a), in yeast (b) and bacteria (c) are plotted. Only
those superfamilies not found within the first ten ranks in human are shown in b (P-loop, protein
kinase-like, RNA-binding domain and the classic zinc finger), and only those are shown in c that
are not shown in a or b (P-loop and NAD(P) binding Rossmann-fold).

The plots in figure 4.9 only show the number of different superfamily partners.

However even if the number of partners is similar, the actual frequencies and com-
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position of these partnerships often shows great variation. Hegyi & Gerstein (2001)

demonstrated that there is less functional conservation in multi-domain than in

single-domain proteins except if they have exactly the same domain combination,

so that a superfamily can have different functional contexts. This observation from

Hegyi and Gerstein suggests a higher degree of functional variation than expected

for a superfamily in different proteomes even if the number of domain partners is

similar. For example, fifteen partners for the c-type lectin are found in human and

worm, but some of the frequently found partners are different. In worm, many sper-

madhesin and integrin A domains are found together with c-type lectins, whereas the

integrin A is not found at all as a partner for c-type lectins in human, although the

overall integrin domain frequency in human is more than twice as high than in worm.

In human more complement control modules (SRC domain) and immunoglobulins

are found in combination with c-type lectins (the immunoglobulin is not found at

all in the list of lectin partners in worm). In addition, it has been shown that in

many cases of adjacent domains the domain order is an important functional aspect

(Apic et al., 2001; Bashton & Chothia, 2002).

In summary, the analysis described here suggests that for most superfamilies,

as the organism increases in complexity, specialisation and diversity does not arise

from an increasing number of domain combinations, but rather from refinement and

diversification of the superfamily repertoire itself (for example, the immunoglobulins

belong to a diverse superfamily with many members and possibly different functions

in different proteomes) and probably by changing the repertoire of domain partners.

The web-site mentioned in the methods section provides a link to an application

that allows generic ranking of selected proteomes according to selected properties

such as domain frequencies, superfamily partners or domain repetitiveness of super-

families. The results can be displayed as a table and as a plot similar to those shown

in this work.

4.4.6 SCOP superfamiles in disease genes

The OMIM database (Antonarakis & McKusick, 2000) (Online Mendelian Inheri-

tance in Man) identifies genes that have been associated with human disease. Hu-

man proteins were associated with OMIM identifiers via the genelink table from

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM


Structural Characterisation of the Human Proteome 146

ENSEMBL. 6656 different OMIM entries are linked to 5856 human proteins, indi-

cating that a human protein can be associated with several OMIM entries. The

frequency of each SCOP superfamily in the proteome assigned to disease genes ver-

sus the non-disease genes is then evaluated. 7,621 SCOP domains in 481 different

superfamilies could be assigned to disease genes.

This analysis directly associates SCOP superfamilies with disease and non-disease

genes. However, the cause of the disease state could be the result of one (or a

combination) of effects not directly involving the protein, for example alteration of

regulation or deletion of the entire gene. In addition, any point mutation or deletion

within a protein may not be within a particular SCOP domain. However, for many

genes in OMIM the location of the alteration (e.g. point mutation) is not known.

Thus to analyse the entire OMIM database one can only gain an overview of the

distribution of SCOP superfamilies between disease and non-disease genes. A more

focused analysis would consider only those genes where the location of the alter-

ation has been identified (see Sreekumar et al. (2001) for a review of computational

analysis of disease genes).

The analysis of the superfamilies in disease genes was performed on the pro-

tein sequence level rather than on the domain level, so that only one domain per

superfamily per protein sequence was counted. The aim of the analysis is to de-

scribe general trends for superfamilies and their biological function in association

with disease, and therefore superfamilies with low sequence frequencies but signifi-

cantly high domain frequency due to repeats, which confuse a trend analysis, were

excluded. For example the extra-cellular domain of the cation-dependant mannose

6-phosphate receptor has fifteen domains in only two proteins that are associated

with a disease (one domain in the small mannose 6-phosphate receptor and fourteen

repeated domains in the big receptor) and only two domains in non-disease proteins.

This receptor plays an important role in targeting lysosomal enzymes to the lyso-

some. This superfamily is strongly over-represented in the domain based analysis

but not in the sequence based analysis.

The overall frequencies of SCOP superfamilies in the two sets of genes are sig-

nificantly different at >99.9% confidence. Table 4.3 reports the SCOP superfamilies

that are significantly over- and under-represented in the disease genes at >95% con-

fidence as confirmed by a χ2 test.
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SCOP superfamily R ND NnD f Description

Interleukin 8-like
Chemokines (V)

62 36 12 3 Mainly small inducible cytokines (single do-
main proteins), immuno-regulatory and in-
flammatory processes, homoeostasis, develop-
ment. Secreted proteins, activity via GPCRs.

Nuclear receptor
ligand-binding do-
main (M)

56 40 15 2.67 Growth factor inducible intra-cellular
steroid/thyroid receptors coupled with
a DNA binding domain (glucocortocoid-
receptor like) such as estrogen receptor
(breast cancer associated). Transcription
factors and enhancers.

Cystine-knot cy-
tokines (E)

49 42 17 2.47 Growth factors belonging to TGF-b, cell de-
termination, differentiation and growth. Neu-
rotrophins, differentiation and function of
neurons.

Periplasmic binding
& protein-like I

96 21 9 2.33 Glutamate receptors, ionotropic (ion chan-
nels) and metabotropic (GPCRs with activity
via a second messenger), also found in recep-
tors involved in regulation of blood pressure.

Serpins (M) 76 26 12 2.17 Serine protease inhibitors of the blood clotting
cascade.

4-helical cytokines
(V)

66 32 15 2.13 Different interferons and interleukins (extra-
cellular single domain proteins), regulatory in
differentiation and proliferation, antiviral, im-
mune and inflammatory response.

Winged helix DNA-
binding domain

21 70 57 1.23 Associated with at least 25 disease entries.
Transcription factors (activation and repres-
sion). Dominated by forkhead family mem-
bers, important in embryogenesis of the ner-
vous system in mammals, associated with dif-
ferent leukemia; ETS family of oncogene prod-
ucts; histones (chromatin remodelling) and
others.

Helix-loop-helix
DNA-binding do-
main (E)

28 54 45 1.2 Transcriptional control for cell type deter-
mination during development, also transcrip-
tional control of histone acetyltransferases
(preparation of chromatin for transcription).

continued on next page
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continued from previous page

SCOP superfamily R ND NnD f Description

Glucocorticoid
receptor-like (DNA-
binding domain)
(E)

25 62 52 1.19 Together with nuclear receptor ligand-binding
domains (see above). Frequently found in pro-
teins of developmental genes. LIM domain
proteins de-regulated in cancer cell-lines.

Homeodomain-like 8 131 142 0.92 Different homoebox proteins (transcription
factors), particularly important in early em-
bryogenesis. Some homeobox genes are onco-
genes.

Protein kinase-like
(PK-like)

4 246 291 0.85 About 100 different associated disease entries
(e.g. different cancers). Range of kinases such
as MAP or PKC (signal transduction).

RNA-binding do-
main

6 76 255 0.3 RNA splice factors (alternative splicing),
rapid degradation of mRNAs in particular
from cytokines and proto-oncogenes. Involved
in e.g. spermatogenesis related to male infer-
tility.

RING finger domain,
C3HC4 (E)

13 43 163 0.26 Zinc-finger like domain associated with
protein-protein interaction, often found in
transcription regulatory proteins. Linked to
e.g. apoptosis inhibitors, breast cancer gene
BRACA1, acute leukemia.

Classic zinc finger,
C2H2

2 135 549 0.25 Nucleic acid binding, range of transcription
factors, cell proliferation and differentiation,
early development, some are proto-oncogenes.

Tetratricopeptide re-
peat (TPR)

19 25 121 0.21 Interaction partner of regulatory proteins,
subunit of G-proteins. Involved in a range of
biological functions such as cell-cycle, activa-
tion of apoptosis, chromatin assembly, actin
binding, cancer.

Ankyrin repeat 12 33 187 0.18 Protein-protein interaction domain. Found at
least 17 different OMIM entries describing e.g.
inhibitor of NFkB and cyclin-dep. kinase in-
hibitors, interaction with p53 in apoptosis.
Co-occurrence with other interaction and reg-
ulatory domains such as DEATH and SH3.

continued on next page
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continued from previous page

SCOP superfamily R ND NnD f Description

eL30-like 58 5 45 0.11 Ribosomal protein L30, translation termina-
tion.

Pyk2-associated pro-
tein β ARF-GAP do-
main (E)

91 1 31 0.03 RIP protein that assists HIV in replication
by facilitating the nuclear export of mRNA.
Corresponds to the putative GTP-ase activat-
ing protein for Arf in PFAM. Non-disease pro-
teins are often associated with PH-domains or
ankyrin repeats and may have a range of bio-
logical functions.

Table 4.3: Over- and under-represented SCOP superfamilies in OMIM disease genes. For each
SCOP superfamily, the rank order R of superfamily occurrences in sequences of the human pro-
teome is given (see text for details), followed by the sequence frequency in disease genes (ND)
and the frequency in non-disease genes (NnD) . The ratio (f) of these occurrences is then given
as ND/NnD, the double horizontal line separates over-represented from under-represented super-
families. Taking all SCOP domains together, the two populations (disease and non-disease) are
significantly different (>99.9% confidence) as calculated by a χ2 test. For each SCOP superfamily,
the frequency ratio compared to the others was significant at > 95% confidence, after allowing for
the number of SCOP domains tested (testing domains of each superfamily against all remaining
domains). Bold letters in braces in the superfamily field indicate that this superfamily is specific
for eukaryotes (E), metazoans (M) or vertebrates (V). The Description field gives an overview
over the broad biological functions associated with the disease genes.

Superfamilies over-represented in proteins of disease genes are mainly associ-

ated with regulation, having biological functions in development, differentiation

and proliferation, and not being directly involved in metabolism. Overall the over-

represented superfamilies can be put into the following categories, immune-response,

immune-regulation, growth factors and transcription factors (helix-loop-helix do-

mains, winged helix domains, DNA-binding domain of the glucocorticoid receptors).

The main biological relevance of the under-represented superfamilies may be sum-

marised as transcription factors (homeodomain and classic zing fingers), protein-

protein interaction domains involved in signalling and transcription (other than

transcription factors) and translation. However, many of the superfamilies are in-

volved in a wide range of biological functions and may be placed in more than one

category, e.g. the interleukin 8-like chemokines are not only involved in immune-

response but also play a regulatory role during development.

The most over-represented superfamilies (with a ratio >2) are biased towards
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small mainly extra-cellular single or two domain messenger proteins (interleukin,

cyctine-knot cytokines and 4-helical cytokines), whereas three of the seven strongly

under-represented superfamilies (with a ratio ≤0.3) are involved in regulation via

protein-protein interaction, and another three superfamilies in are involved in tran-

scription and translation. Further, the five most over-represented superfamilies are

specific for human, metazoa or at least eukaryota, whereas in the set of under-

represented superfamilies only two eukaryotic specific superfamilies are found. On

the other hand, eight of the nine under-represented superfamilies are in the list of

the top twenty superfamilies in human sequences, four within the top ten. None

of the over-represented superfamilies is found within the top twenty ranks. The

over-represented superfamily with lowest rank (highest frequency) in human is the

‘winged helix’ DNA-binding domain (rank 21)1.

Taking the above observations together, the most over-represented superfamilies

in disease genes are those likely to have evolved within the metazoan branch of evo-

lution and that are moderately expanded in human (the average sequence rank is

65 of 463 ranks in total). The homeodomain-like and protein kinase-like superfam-

ilies are just slightly but significantly under-represented, and are found with high

overall frequencies in both categories. These two superfamilies are associated with

biological key functions in many regulatory pathways (see table 4.3 for details). The

results of the analysis of the association of SCOP superfamilies with disease genes

suggest that it is in general unlikely to find abundant superfamilies with a mas-

sive bias towards disease associated proteins, possibly because the disruption of key

functions may often be lethal. However, despite this general suggestion, the analysis

described here does not have any explanation why certain superfamilies are over-

or under-represented in disease genes. These observations may encourage future

work to formulate hypotheses that may lead to deeper insight into the relationship

between disease and protein folds.

4.4.7 Transmembrane proteins

Transmembrane regions in the proteomes were identified using the hidden Markov

approach implemented in TMHMM-2 (Sonnhammer et al., 1998). Figure 4.10 shows

1Note that the ranks and frequencies are based sequence frequencies rather than domain fre-
quencies as in table 4.1
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the fraction of the proteomes that were predicted to occur as membrane spanning

regions. Within this work at least 13% of the human protein sequences are predicted

to be membrane proteins (data not shown). However, for the human proteome only

3% of residues are predicted to be in transmembrane regions (the membrane span-

ning parts of the protein) which is a similar percentage as for yeast and fly but less

than in worm and the average values for bacteria and archaea. The Figure also shows

that 13% of the proteome consists of globular regions (regions excluding coiled-coils,

low complexity regions or signal peptides) that are part of a protein chain that spans

a membrane (yellow bars, ‘TM/globular’). In human, only about 1% of the residues

either form short loops (<30 continuous residues) linking two membrane spanning

regions or appear at a chain terminus of a membrane protein. The ratio between

the globular part of transmembrane proteins and the membrane spanning part is

smaller in bacteria and archaea than in the four eukaryotes. This may be due to

a larger fraction of proteins in bacteria and archaea that are completely membrane

integral (i.e. proteins mainly built by membrane helices and connecting loops such

as bacteriorhodopsin and probably those of membrane integral redox-cascades). The

proteome of C. elegans contains both the largest fraction and the largest absolute

number of transmembrane proteins (4559 membrane proteins, 28% of the proteome).

The high number of transmembrane proteins is mainly due to an expansion of the

family of seven helix transmembrane G-protein coupled receptors (Bargmann, 1998).

Figure 4.11 shows the ratio of residues in globular domains to residues in trans-

membrane regions for different membrane proteins as determined by the number of

predicted membrane spanning helices. The ratios are substantially different between

species for proteins with one to three transmembrane regions and become more sim-

ilar as the number of transmembrane regions increases. This shows that the full

sequence of transmembrane proteins with only one to three membrane-spanning re-

gions differ in length between the proteomes of the analysed organisms reflecting

a higher number of potential globular domains, with the fly having longer protein

sequences for transmembrane proteins than the other organisms. In bacteria and

archaea the ratio drops below one (e.g. the majority of the protein is membrane

integral) at about six to seven membrane segments. In contrast eukaryotes have the

majority of the residues of their proteins in potential globular domains, suggesting

additional functionality such as protein-protein interaction or receptor capabilities

of these membrane proteins.
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Figure 4.10: Fractions in residues of globular and non-globular parts in membrane proteins.
Globular denotes globular domains in non-transmembrane proteins, TM/Globular are globular
regions within membrane spanning proteins (those protein with at least one transmembrane helix
domain), TM/Loop are short loops in transmembrane proteins and TM are the residues in actual
membrane integral helices. See text for details.

Table 4.4 reports the frequencies of SCOP superfamilies that occur in protein

chains that span the membrane. This analysis has a focus on the globular domains

associated with transmembrane proteins and accordingly excludes completely mem-

brane integral proteins of the analysed proteomes and does not consider the SCOP

class of membrane proteins. The four superfamilies of highest rank are domains that

can be found in cell surface proteins involved in cell-cell interaction and receptor

molecules. In human, the most common SCOP domain associated with membrane-

spanning chains is the immunoglobulin superfamily, whereas in fly and worm this

superfamily is at rank four and five, respectively. The cadherin is the most common

SCOP superfamily in fly, and in worm the EGF/laminin is the most popular mem-

brane associated superfamily. The relative importance of superfamilies involved in
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Figure 4.11: Ratio of globular regions to transmembrane regions in membrane sequences classified
according to the number of transmembrane regions. The diagram only shows ratios for which at
least nine transmembrane proteins were found. See text for details.

cell-cell interaction and cell surface proteins is also pointed out by the absence of

these superfamilies in yeast (also see table 4.1). All eight immunoglobulin domains

found in yeast are located in soluble, probably intra-cellular, proteins (no signal

peptides could be found via prediction).

In conclusion, the results of the transmembrane analysis reflects the multi-cellular

environment of human, fly and worm, where specialised systems for cell-cell com-

munication and recognition are required in, for example, tissue formation.

Human Fly Worm Yeast

SCOP superfamiliy N % R N % R N % R N % R

Immunoglobulin 463 38 1 126 26 4 74 16 5 - - -
Cadherin 440 72 2 206 93 1 114 84 2 - - -
Fibronectin type III 359 43 3 134 54 3 66 30 7 - - -
EGF/Laminin 216 18 4 139 43 2 163 39 1 - - -
Ligand-binding domain of
low-density lipoprotein re-
ceptor

126 51 5 106 54 5 79 55 4 - - -

continued on next page
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continued from previous page

Human Fly Worm Yeast

SCOP superfamiliy N % R N % R N % R N % R

P-loop containing nu-
cleotide triphosphate
hydrolases

87 10 6 89 15 6 91 18 3 41 10 1

Protein kinase-like (PK-
like)

65 12 7 27 10 12 72 17 6 - - -

Complement control mod-
ule/SCR domain

56 20 8 25 44 13 3 6 65 - - -

C-type lectin-like 53 36 9 3 8 54 34 11 8 - - -
MHC antigen-recognition
domain

47 82 10 - - - - - - - - -

TNF receptor-like 38 73 11 2 100 67 - - - - - -
RNI-like 34 35 12 31 35 8 14 38 23 - - -
Serine proterase inhibitors 32 25 13 17 41 19 18 21 19 - - -
Periplasmic binding
protein-like I

28 93 14 16 73 22 30 88 11 - - -

ConA-like
lectins/glucanases

27 20 15 28 42 10 27 26 12 5 63 10

RING finger domain,
C3HC4

25 12 16 17 16 19 20 16 18 5 15 10

L domain-like 25 21 16 25 26 13 23 16 15 1 8 38
Spermadhesin, CUB do-
main

24 19 18 42 50 7 23 13 15 - - -

(Phosphotyrosine protein)
phosphatases II

23 21 19 7 17 30 14 14 23 - - -

EF-hand 23 8 19 15 9 24 10 8 29 - - -
Metalloproteases
(‘zincins’), catalytic
domain

22 33 21 4 15 43 8 16 37 - - -

POZ domain 22 18 21 5 5 37 22 15 17 - - -
C2 domain
(Calcium/lipid-binding
domain, CaLB)

21 11 23 17 25 19 32 36 10 16 50 2

Ankyrin repeat 21 8 23 18 15 18 34 27 8 5 16 10

Extracytoplasmic domain
of cation-dependent man-
nose 6-phosphate receptor

15 88 32 - - - - - - 1 100 38

SpoIIaa 5 83 63 4 100 43 5 100 53 2 100 25
Adenylyl and guanylyl cy-
clase catalytic domain

16 67 29 28 76 10 26 70 13 - - -

continued on next page
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continued from previous page

Human Fly Worm Yeast

SCOP superfamiliy N % R N % R N % R N % R

Blood coagulation in-
hibitor (disintegrin)

18 67 26 3 43 54 4 67 58 - - -

Periplasmic binding
protein-like II

16 62 29 30 77 9 12 92 25 - - -

Syntaxin 1A N-terminal
domain

8 62 47 5 56 37 8 62 37 7 88 5

L-2-Haloacid dehaloge-
nase

11 61 34 2 10 67 5 28 53 2 13 25

Snake toxin-like 5 56 63 2 100 67 1 50 98 - - -
Metal-binding domain 6 55 58 4 80 43 4 80 58 5 71 10
Transferrin receptor
ectodomain, apical do-
main

7 54 53 - - - 2 50 79 3 75 20

Table 4.4: SCOP superfamilies associated with transmembrane proteins. The table gives the
number (N) of domains in each superfamily that are found in sequences that have a transmem-
brane section. The list of superfamilies is ordered by the most abundant superfamilies in human
membrane sequences. The ‘%’ is percentage of the total occurrence of each superfamily in the pro-
teome (the total is the sum of domains in a superfamily in transmembrane and non-transmembrane
chains, this is the same as in table 4.1). R denotes the rank of N. The lower part of the table
(separated by a double horizontal line) details superfamilies with highest percentages in membrane
proteins and with a frequency of at least five domains in human that are not reported in the upper
part.

Table 4.4 also presents the fraction of the total domain frequency for each super-

family that is associated with membrane spanning chains. Of the superfamilies with

at least five domains in transmembrane proteins, only the MHC antigen-recognition

domain and the periplasmic binding protein-like I have more than 80% of their

representative domains in transmembrane proteins. Further down the list (bottom

part of table 4.4), several other superfamilies are found with more than 50% of their

domains in transmembrane proteins. However, in worm all six scavenger receptor

cystein-rich domains (not shown in table 4.4) are found in membrane glycoproteins,

and all five spoIIa domains (involved in sulphate transports) are found in membrane

proteins.

SCOP superfamilies that are frequently associated with transmembrane regions

are also common in chains that do not span the membrane. This supports the view
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that domains are mobile elements that are not restricted to co-evolve either always

in association with a transmembrane section or always in a chain that does not span

the membrane.

The top ranking superfamilies in bacteria are different from those found in eu-

karyotes (table 4.5). These superfamilies are mainly associated with bacterial sig-

nalling (ATPase domain and homodimeric domain of signal transduction histidine

kinase, PYP-like sensor domain, CBS-domain) or with small molecule binding prob-

ably as membrane bound receptors or enzymes (P-loop containing nucelotide hy-

drolases, nucleotide-diphospho-sugar transferases of glycosyltransferases, NAD(P)-

binding Rossmann-fold, L-2-Haloacid dehalogenase of heavy metal transporters).

In bacteria no globular superfamily with more than two representatives (an average

over the seven processed bacterial proteomes) could be identified that is exclusively

found in membrane proteins. The list of the most popular superfamilies found in

transmembrane proteins for archaea is similar to those for bacteria (data not shown),

but the frequencies of which domains are found are much lower, e.g. the top ranking

superfamily is the P-loop with only eight domains in the three archaea proteomes.

In addition, domains that may belong to the immunoglobulin (three domains in P.

horikoschii) and the cadherin (three domains in M. jannaschii) superfamilies were

found in two archaea sequences.

Metazoa Yeast Bacteria Archaea

SCOP superfamiliy N % R N % R N % R N % R

ATPase domain of HSP90 chaperone/DNA

topoisomerase II/histidine kinase

- - - - - - 13 59 1 - - -

P-loop containing nucleotide triphosphate hy-

drolases

89 14 6 41 10 1 11 7 2 3 2 1

Homodimeric domain of signal transducing

histidine kinase

- - - 2 67 25 9 64 3 - - -

PYP-like sensor domain 2 8 88 - - - 7 41 4 - - -

CBS-domain 8 44 38 2 20 25 5 42 5 1 4 4

Nucleotide-diphospho-sugar transferases 6 29 48 4 80 16 3 43 6 2 40 2

NAD(P)-binding Rossmann-fold domains 13 9 29 2 2 25 3 4 8 1 4 4

L-2-Haloacid dehalogenase 6 32 47 2 13 25 3 33 7 - - 15

Table 4.5: SCOP superfamilies associated with transmembrane proteins in bacteria. The table is
ordered by the most abundant superfamilies in bacterial membrane proteins (with at least three
domains associated with membrane proteins). Averages are given for Metazoa (human, fly and
worm), the processed bacterial and archaea proteomes. Otherwise the legend for table 4.4 applies.

Figure 4.12 shows the frequencies of the overall top ten human superfamilies (the
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same superfamilies as in figure 4.6) with the number of domains in membrane pro-

teins compared to the other processed proteomes (4.12a) and the same for the top

ranking bacterial superfamilies (4.12b, the P-loop is not shown as it is already shown

in 4.12a). As expected, the immunoglobulin, cadherin, fibronectin and EGF/laminin

are most expanded in human compared to fly and worm. Interestingly the P-loop

is found with very similar absolute numbers in membrane proteins in all metazoan

proteomes, compared to the overall expansion shown in figures 4.6. This suggests

that, although there are more P-loops in human than in fly and worm, the additional

duplications are associated with soluble proteins only.
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Figure 4.12: Expansion of SCOP superfamilies in membrane proteins. The number of domains
in a superfamily that are found in proteins that have at least one transmembrane helix is shown
for the different proteomes. The ten overall most abundant superfamilies in human (a), as in figure
4.6, and bacteria (b) are plotted. For better scaling the P-loop is excluded from b as it is already
shown in a.

The top ranking superfamilies in bacteria (figure 4.12b) are rarely associated with

membrane proteins in prokaryotes and yeast, and this trend also remains across the

metazoans for six of the ten superfamilies (no Chey-like domains could be identified

in human). Note that the total numbers in 4.12b are much lower than in figure

4.12a. Only one periplasmic binding protein-like II domain is found on average in

membrane proteins in bacteria, and although the total number of domains in this

superfamily is higher than for the other proteomes (data not shown), membrane
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association has only been expanded in metazoa. However, the periplasmic binding

protein-like II is a diverse superfamily that contains at least ten different PFAM

families, and in bacteria there seem to be many soluble extra-cellular members of

this superfamily (suggested by signal peptide prediction). Most of the metazoan do-

mains of this superfamily are associated with ligand-gated ion channel proteins and

receptor family ligand binding proteins, and both of these families are membrane

proteins. In yeast four of the five domains of this superfamily are part of presumably

intra-cellular soluble proteins involved in pyrimidine biosynthesis. The divergence

of the periplasmic binding protein-like II superfamily to produce different functional

families in bacteria and metazoa seems to be coupled to some extent with different

sub-cellular locations (soluble and membrane bound).

4.5 Concluding remarks

This work describes an integrated analysis of the human proteome and compared

the results to those of other proteomes. The key aspect of this study is the inte-

gration in the context of the different species of the following features: the extent

and reliability of structural and functional annotations of the proteomes; the extent

of domain duplication; change and expansion of the structural superfamily reper-

toire between different proteomes; the relationship between human disease genes and

structural superfamilies; and the relationship between transmembrane proteins and

their globular regions. The study included a structure based analysis from which it

was possible to make evolutionary insights that could not be obtained from sequence

based methods alone.

These general bioinformatics analyses require simplifications and are also subject

to errors in the predictive methods. In particular, a simplified strategy to estimate

the extent to which there is some functional information derivable by homology had

to be employed. However, this reflects the standard practice in obtaining an initial

suggestion of protein function in the absence of characterised motifs as found in

PFAM. Automated proteome annotation, particularly in eukaryotes, is complex and

the exact numbers reported here will need to be refined as the bioinformatics tools

improve and more experimental data becomes available.

This study and related work by others (e.g. Frishman et al. (2001); Iliopoulos
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et al. (2001); Koonin et al. (2000)) have highlighted the extent to which we still

need structural information as a step towards understanding the function and evo-

lution of the human and other proteomes. The experimental determination of the

protein structures of these proteomes is the goal of structural genomics initiatives.

Sander and coworkers have suggested that within 10 years we can have representa-

tives of most protein families (Vitkup et al., 2001). However, today some structural

information for about 40% of the human proteome is available that can be used to

provide functional insights.

4.6 Methods

The analysis described in this chapter is based on the 3D-GENOMICS system that

was developed during this work (see chapter 3). This section describes the programs,

parameters and special rules used for the processing.

4.6.1 Protein sequences from complete genomes

Eukaryota: Saccharomyces cerevisiae (No authors listed, 1997), Caenorhabditis

elegans (The C. elegans Sequencing Consortium, 1998), Drosophila melanogaster

(Adams et al., 2000), Homo sapiens (Lander et al., 2001). Bacteria: Mycobacterium

tuberculosis (Cole et al., 1998), Escherichia coli (Blattner et al., 1997), Bacillus subt-

ilis (Kunst et al., 1997) , Mycoplasma genitalium (Fraser et al., 1995), Helicobacter

pylori (Tomb et al., 1997), Aquifex aeolicus (Deckert et al., 1998), Vibrio cholerae

(Heidelberg et al., 2000). Archaea: Aeropyrum pernix (Kawarabayasi et al., 1999),

Pyrococcus horikoshii citep (Kawarabayasi et al., 1998), Methanococcus jannaschii

(Bult et al., 1996). See table 1.1 for the size of each of the genomes. The H.

sapiens proteome is the ENSEMBL-0.8.0 confirmed peptide data set (http://www.-

ensembl.org). Other sequences were taken from the NCBI (ftp://ftp.ncbi.nlm.nih.-

gov/genomes/). See also table 3.2.

4.6.2 Sequence analysis

Sequences, annotations and results are stored in a relational database (MySQL,

http://www.mysql.com), which serves as the back-end for an automated processing

http://www.ensembl.org
http://www.ensembl.org
ftp://ftp.ncbi.nlm.nih.gov/genomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/
http://www.mysql.com
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pipeline running on a Linux computer farm. The software and database system

developed within this work allows for updates of the data and results as well as

comparisons across proteomes. See section 3 for details.

The sequences were first scanned for: signal peptides (SignalP-1); transmem-

brane helices (THMM-2); coiled-coils (Coils2); low complexity regions (SEG); and

repeats (Prospero V1.3). See table 3.1 for web resources (URLs) and references.

The default parameters were used.

Protein sequence database searches were performed using PSI-BLAST version

2.0.14 (Altschul et al., 1997), based on the experience from the work described in

chapter 2. Sequences were masked for low complexity regions, transmembrane re-

gions, coiled-coils and repeats. The h-value and e-value cut-offs both were 5× 10−4

(the h-value is the e-value cut-off for sequences to be included in the next PSSM), and

the maximum number of iterations was 20. The sequence database used contained

634,179 different protein sequences from the NCBI NRPROT (all non-redundant

GenBank CDS translations, PDB, SwissProt and PIR, the protein sequences of the

genomes processed in this work and the sequences from the SCOP-1.53 database).

SCOP sequences were taken from the ASTRAL database, a supplement for SCOP,

Chandonia et al. (2002), see section 1.2.3 for a description of these databases. Low

complexity regions of sequences from this database were masked by ‘X’ (the ‘X’

character is ignore by the sequence comparison programs).

It has been shown (Park et al., 1998) that PSI-BLAST detects relationships that

are not symmetric, i.e. a query with sequence A might not have a significant match

to B whilst searching with B could have a significant match to A. To address this

problem, each SCOP sequence was run against the protein sequence database via

PSI-BLAST to construct a position specific scoring matrix (PSSM) that was used

with the IMPALA program (Schaffer et al., 1999) to assign SCOP domains to each

of the genome sequences. This procedure increases the sensitivity without introduc-

ing many new false positives (this was confirmed by manual investigation of SCOP

domain assignments). The e-value cut-off for IMPALA was 5× 10−3 (this cut-off is

higher than for PSI-BLAST because of a different scoring scheme, see sections 1.3.5

and 1.3.6 for details).

In addition, for all sequences BLAST was run against a sequence database that
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contains only the SCOP sequences to ensure that close homologues not identified by

PSI-BLAST because of the masking described above are found by BLAST. Query

sequences were not masked (not even for low complexity regions).

BLAST (Altschul et al., 1997) was run for those sequences that contain a trans-

membrane region, coiled-coil region or a repeat but without removing (masking)

these regions. Only low complexity regions were masked. This ensures that at

least close homologues of membrane integral proteins, coiled-coils and proteins that

mainly consist of repeats, are identified. These close homologues may not be de-

tected by PSI-BLAST because there may not be enough valid residue signal left

after the masking. The masking, as described above, is necessary for PSI-BLAST to

avoid the corruption of the PSI-BLAST PSSM and the aggregation of false positive

alignments. Repeats were masked for PSI-BLAST runs because these tend to in-

crease the number of significant HSPs (alignments) dramatically without providing

much additional information (a protein A with three domains of the same family

could in theory produce 32 alignments with another protein B that contains three

homologous domains of the same family). For PSI-BLAST and BLAST the same

database was used. The e-value cut-off was 5× 10−4.

Examination of initial results from this work showed that there was a problem

in PSI-BLAST detecting very short SCOP domains (less than 50 residues) because

BLAST/PSI-BLAST e-values may not be significant for short alignments, yet man-

ual investigation of the region strongly suggested that it should be assigned to a

particular SCOP domain (for example by a PROSITE pattern). Within this work a

heuristic method was developed to address this problem: An assignment to a SCOP

domain was accepted if the e-value is <10 for an IMPALA or BLAST hit and <1.0

for a PSI-BLAST hit and if the domain is shorter than 50 residues and the sequence

identity of the alignment satisfies the identity cut-off described by Rost (1999). This

identity cut-off requires a much higher sequence identity for shorter than for longer

alignments (see also equation 2.1 in chapter 2). Overall, this procedure weights

sequence identity more than e-values for alignments between short domains. If the

identity condition was not satisfied, a SCOP domain was still accepted if the align-

ment shares a common PROSITE pattern (Falquet et al., 2002) between query and

subject.

All accepted SCOP domains must be present with at least 65% of their domain
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in the alignment, to avoid partial domain assignments that are in many cases false

positives. The analysis described in chapter 2 showed that a 50% coverage of SCOP

domains is a sensible choice to avoid false positive alignments while maintaining a

relatively high coverage of true positives. However, manual investigation of a subset

of alignments between protein sequences from the analysed proteomes and SCOP

domains showed that many of these alignments that represent just a fraction of the

actual domain are likely to be false positives. To find a sensible cut-off for the frac-

tion of a SCOP domain that has to be present in the alignment, the highest scoring

alignments (those with the lowest e-value) were taken from each query region of the

proteomes (see below for a definition of the term region) to analyse the distribution

of the fractions represented by the alignments.

Figure 4.13a shows that most of the alignments between protein sequences from

the proteomes and SCOP domains represent between 90% and 105% of the SCOP

domains (insertions may contribute to a coverage > 100%). The dataset shown in

blue in figure 4.13 shows the distribution of alignments between SCOP domains as

queries and as subjects, and is shown to validate the analysis of alignment frac-

tions. The number of alignments start to increase at about 65% (the domain length

fraction present in the alignment) in both distributions. However, the proteome

dataset shows a smoother increase in the number of alignments between 10% and

80% domain length fraction (i.e. there are more of these alignments than in the

SCOP/SCOP). This may be because the SCOP single domain sequences are not

good approximation of the real situation for protein sequences from the proteomes

which are often multi-domain proteins. An alternative explanation is that some do-

mains may be more flexible in length with only a conserved core that comprises on

average 65% of the existing SCOP domains. Also, some of the domain definitions

in SCOP may be wrong, when considering a huge and diverse protein dataset as in

this analysis. In addition, wrong gene predictions may account for truncated domain

alignments.

However, the assumption is that the distributions of alignment fractions are com-

parable, and the SCOP single domain dataset is to some extent representative for

the protein sequences from the genomes. Figure 4.13b analyses the distribution of

the domain fractions of false positive alignments between SCOP domains as the

ratio between false positive and true positive domain alignments. This is basically a

simplified version of the benchmark described in chapter 2. True positive alignments
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are alignments between domains of the same superfamily. Between 60% and 70%

domain fraction the number of false positive alignments decreases. The assumption

is that the SCOP domain assignments in the proteomes have a similar distribution

of false positives to the SCOP/SCOP benchmark in figure 4.13b. Alignments that

represent less than 20% or more than 105% of their domain are most likely to be

false positives (the smallest fraction is 6% and the biggest fraction is 173%, only the

fractions between 10% and 110% are shown).

The above analysis leads to the choice of a 65% cut-off for the domain fraction

to accept assignments to SCOP domains. On average this reduces the total num-

ber of SCOP regions assigned to the proteomes by about 10%. However, many of

these alignments can be considered tentative, and are often without any supporting

evidence by PFAM domains and/or PROSITE patterns. In this study it is critical

to avoid false positive domain assignments. The SCOP domain partner analysis

described in section 4.4.5 (figure 4.9) is especially prone to errors, because a domain

partnership requires only one observation per superfamily, so that a single false do-

main assignment would bias the analysis of domain co-occurrence.

The analysis of domain fractions does not distinguish between superfamilies.

Further detailed analysis considering specific superfamily cut-offs and domain length

variability within a superfamily may lead to a better discrimination between true

and false positive alignments and a good description of the domain core. However,

in this study only the very simple approach of treating all domains and superfamilies

as a whole was considered, for the purpose of choosing a fraction cut-off that lies

outside the main population of domain fraction. Nevertheless, some true positive

alignments may be missed due to the 65% cut-off.

It should be noted that residue based calculations rely on the accuracy of the se-

quence comparison heuristics that were employed. For the BLAST (and derivatives)

based assignments this means that ends of domains may not be correctly identified

during the extension step of the algorithm. Also potential inter-domain regions were

not considered, so that even in theory 100% residue based assignment may not be

reached. This affects the results represented in the bar-plots shown this chapter.

However, this is a systematic error on the algorithm level of the employed methods,

and one has to assume that this affects the results of all the processed sequences

equally, so that as a first approximation a comparison of residue based fractions is
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Figure 4.13: Fractions of SCOP domains present in alignments generated by PSI-BLAST. (a)
Shows the distribution of the fractions of SCOP domains in alignments between proteins from
the processed genomes (the queries) and SCOP domains (the subject); and SCOP domains as
queries and SCOP domains as subjects (blue dataset). (b) Shows the distribution of the different
domain fractions of false positive SCOP/SCOP domain alignments as the ratio of false positive
alignments to true positive alignments. Alignments between domains of different superfamilies are
considered to be false positives. Alignments between identical sequences are ignored. Insertions in
the alignment are counted and may give fractions bigger than 100%. See text for details.

still valid.

As described in section 3.5 the 3D-GENOMICS system (chapter 3) clusters align-

ments within the same region of a query sequence. These clusters are referred to as

regions. For reasons of data retrieval performance, alignments produced by BLAST,

PSI-BLAST and IMPALA are clustered as described in section 3.5, and only the

representative sequence for a region (the one with the lowest e-value) is taken for the

annotation described in this chapter. For SCOP domains the criteria to be allowed

to enter the region clustering is described above. All SCOP domains of the same

cluster overlap by at least 50% (with respect to the shorter domain). All other se-

quence types described in section 3.5 on page 98 have to be at least 50 residues long

or must represent 50% of their sequence to be accepted for the clustering. These

regions are single linkage clusters, and sequences only have to overlap by one residue

(the main purpose of these regions is to reduce the amount of data).
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PFAM domains were assigned via HMMer (Eddy, 1998) and the PFAM hidden

Markov model library version 6.2. The e-value cut-off to accept a hit was 0.1 and a

domain had to be present in the reported alignment with at least 75% of its entire

length.

For the analysis of transmembrane proteins, sequences were truncated if the Sig-

nalP program (Nielsen et al., 1997) could identify a potential signal peptide. This

avoids false positive predictions of transmembrane regions at the N-terminus of a

sequence.

4.6.3 Availability of annotation

The results of the analysis are available as 3D-GENOMICS via the web at http://-

www.sbg.bio.ic.ac.uk. This includes query forms for database searches and the dis-

play of tables and alignments. The web-site provides a special section with results

from comparative analyses, including an application to list different domain prop-

erties such as repetitiveness, association with transmembrane proteins or domain

partners ranked by frequency in a selected ‘master’ proteome.

http://www.sbg.bio.ic.ac.uk
http://www.sbg.bio.ic.ac.uk
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Chapter 5

Summary, Conclusions and

Outlook

This chapter summarises the work described in the previous chapters. Problems,

limitations and possible future developments are discussed.

5.1 Summary and conclusions

This thesis described the development of an automated system for the structural

and functional annotation of proteomes and its application to fourteen proteomes

including the proteins from the human genome. The main parts of this work are

summarised and briefly discussed below.

5.1.1 Benchmarking PSI-BLAST in genome annotation

An important step in structural and functional annotation of proteins is the iden-

tification of homologous proteins of already known structure and/or function. In

chapter 2 the performance of the commonly used sequence comparison method PSI-

BLAST (Altschul et al., 1997) for the structural and functional annotation of pro-

teins of completely sequenced genomes was evaluated.

In previous work by others (e.g. Park et al. (1998)) the performance of sequence

comparison methods was evaluated based on the assumption that a perfect compar-

ison method is able to identify all homologues of a query protein (in a one-to-one

relationship, i.e. all pairwise relationships should be identified). This one-to-one pro-

cedure describes the overall performance of a method and may be used to compare
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different methods. However, for the functional and structural annotation of genomes

only one homologue has to be identified to transfer the information from the homo-

logue to the un-annotated query sequence (this is a one-to-many relationship, i.e.

many homologues provide the same information that is used to annotate a query

sequence). If several homologues can be identified these can be used as supporting

evidence for the annotation. This means that previous benchmarks underestimated

the performance of sequence comparison methods in genome annotation.

In this work the success rate based one the one-to-many relationship was eval-

uated for the PSI-BLAST method. An artificial query proteome assembled from

SCOP domains (Murzin et al., 1995) and a database of remotely related SCOP do-

mains serving as targets were constructed. The homologous relationships between

SCOP domains based are known. For the benchmark the superfamily level was

considered. The benchmark also takes into account the multi-domain character of

proteins, and the performance is evaluated on the domain level.

With the assumption that close homologues relationships can easily be identified,

the benchmark concentrates on the identification of a remote homologues only. For

about 40% of the domains of the SCOP test proteome the correct superfamily can be

assigned via a remote homologue of the test SCOP database. This coverage is about

three times as much as for a one-to-one based approach. Only 1% of the assignments

are wrong (where the superfamily of the query is different from the superfamily of

the alignment subject). The sources of common errors were identified. A set of

sensible parameters for PSI-BLAST was extracted to minimise the number of false

assignments (error rate) and to maximise the number of true assignments (coverage).

The proteins from two completely sequenced genomes (M. genitalium and M. tu-

berculosis) were analysed in terms of their homology to SCOP domains and proteins

of known function using PSI-BLAST with the evaluated set of parameters. From

the success rate of the benchmark the expected fraction of the proteomes with new

folds and function was calculated.

The work carried out in chapter 2 demonstrated the importance of systematic

evaluation of the performance of the sequence comparison methods to highlight

limitations and to estimate the extent of what is still unknown. The evaluation

described in this work is different from the classical approach (one-to-one versus



Summary, Conclusions and Outlook 168

one-to-many relationship) and shows markable differences in the results. This work

also highlights the importance of structural information via structural classification

of proteins, that is necessary to identify homologous relationships in the absence of

detectable sequence homology.

5.1.2 3D-GENOMICS: A proteome annotation pipeline

Based on the experience of the benchmark described in chapter 2, a system for auto-

mated large scale structural and functional annotation of proteins from completely

sequenced genomes was developed to provide a research platform for comparative

proteome analysis. The analysis of the two genomes described in chapter 2 demon-

strated the requirements for an automated analysis pipeline that is able to processes

large amounts of sequence data, to store the results and to allow for further analysis

of these results such as cross comparisons between genomes.

Chapter 3 describes a software and database system to analyse protein sequence

data and to manage the result from different analyses. The developed system is

able to manage different versions of data and can be, to some extent, updated. An

important feature of the 3D-GENOMICS system is the decomposition of the output

from an analysis software into several descriptive fields. For example PSI-BLAST

output is not stored as a single raw text field, instead the informative parts of the

output such as hits (homologues sequences), e-values, scores, sequence identities

and alignments are extracted and stored as indexed fields in the 3D-GENOMICS

database. Relational queries can then be performed on these data-fields, allowing

to link and relate results from different analyses.

The database is encapsulated by an object oriented software interface that man-

ages the data stored in the database as well as performing sequence and proteome

based analysis (for example running PSI-BLAST for a sequence). Analysis objects

have special properties that allow the distribution of these objects over a computer

farm for parallel processing. The software interface also allows transparent access

to the database without requiring the user to know the structure of the underlying

database.

The developed system is generic and allows to integrate new analysis methods

and source data. The system has been used for different projects carried out by
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other members of the group. These projects include an analysis of enzymatic path-

ways, analysis of protein-protein interaction and an analysis of protein function via

automated processing of the scientific literature. Several web based applications

allow users to query the database, to export data and to perform analyses such as

comparing distributions of SCOP domains between proteomes.

Existing annotation systems developed by others may serve a similar purpose.

However, research such as the large scale comparative analyses of proteomes as de-

scribed in this thesis require an open and expandable architecture to allow for easy

integration of new methods and data as well as for the distribution of the analyses

for parallel processing. The integration of a processing pipeline capable for large

scale processing as an open architecture together with the decomposition of the re-

sults for storage and relational retrieval was not provided by the existing systems

at the time this project was started (1999).

The 3D-GENOMICS system was applied for a comparative analysis of proteomes

described in chapter 4 and is summarised below.

5.1.3 Structural Characterisation of the Human Proteome

Chapter 4 described the extent of structural and functional annotation of fourteen

proteomes including the human proteome. In particular the distribution of SCOP

superfamilies (Murzin et al., 1995) across proteomes was analysed.

For about 40% of the human proteome homologues of known structure could be

identified, this is comparable with the structural annotation for most prokaryotes

but is more than for the other eukaryotes that were analysed in this work. For about

13% of the human proteome a homologue of known structure was identified where

the sequence alignments provide sufficient sequence identify for reliable homology

modelling. For about 40% of the human proteome reliable functional annotation

can be obtained via homology to an already annotated proteins.

From the analysis of domains in SCOP superfamilies within the processed pro-

teomes the extent of domain duplication was calculated (all domains within the

same superfamily are assumed to be homologues and are therefore the result of du-

plication events of a common ancestor). About 98% of the domains in the human
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proteome is estimated to have arisen via domain duplication, compared to only 55%

of the smallest organism that was analysed (M. genitalium).

The extent of domain duplication was further analysed. Superfamilies expanded

in the human and other proteomes were identified and compared. Several super-

families were found that are abundant in metazoans only, these are dominated by

cell-surface proteins. The results suggest that more superfamilies were invented dur-

ing evolution between yeast and metazoans than between prokaryotes and yeast.

Combinations of co-occurring SCOP superfamilies within the same protein se-

quence were analysed and compared between proteomes showing that the number of

superfamily partners generally remains stable between proteomes. Nevertheless, the

composition of the set of partners for a given superfamily differs between proteomes.

In addition the organisation of domains in repeats may play an important role in

the development from single- to multi-cellular life.

The distribution of SCOP superfamilies associated with inherited disease in hu-

man was analysed. Superfamilies significantly over-represented and under-represented

in proteins of disease genes were identified. Those superfamilies that are over-

represented in disease genes are dominated by rare eukaryotic, metazoan or even

vertebrate specific superfamilies compared to more abundant superfamilies that are

generally under-represented in disease genes.

In some proteomes nearly 30% of the proteins are predicted to be membrane

proteins. However, only a small fraction of membrane proteins are completely mem-

brane integral (i.e. with no globular domains inside or outside the cell), and most

of the residues in membrane proteins are in fact found in globular domains. The

distribution of SCOP superfamilies in membrane proteins was analysed, showing

that most SCOP domains are mobile elements that are associated with both types

of sub-cellular location: soluble and membrane standing. Metazoan proteomes show

greater expansion of their abundant superfamilies in membrane proteins compared

to the abundant superfamilies in prokaryotes for which membrane association is

rather rare.
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5.2 Outlook

The scientific and technical work carried out in this work may be subject to more

detailed and specific future analyses. Bioinformatics research is mainly driven by

the available data such as protein sequences, structures or expression data. New

technologies provide new data sources and usually trigger the development of new

methods to analyse these new data types. An important aspect in bioinformatics

will therefore be the integration of these data types and associated methods to dis-

cover parameters and rules that ideally lead to the successful simulation of complex

biological processes. On a small scale this work gathers the basic requirements to

understand complex biological processes. However, the work described here is lim-

ited by concentrating on protein sequences and structures.

Between 1998 and 1999 when the number of fully sequenced genomes started to

increased due to the establishment of automated large scale sequencing technolo-

gies, genome annotation became an important aspect. The rigorous evaluation of

automated annotation such as described in chapter 2 was a requirement to show

limits and expectations as well as leading to enhancements of methodologies.

The processing of eukaryotic proteomes using PSI-BLAST described in chapter

4 highlighted additional problems such as the existence of repeats which often lead

to an explosion of the resulting data (the number of significant alignments reported

by PSI-BLAST). Short domains often remain undetected because alignments do

not produce significant scores due to insufficient length. These short domains, also

often found in repeats, are frequently found in eukaryotic proteomes. These addi-

tional problems were undetected by the benchmark described in chapter 2, and only

the extensive processing of the eukaryotic proteomes highlighted these problems.

Therefore some parameters for the protein processing described in chapter 4 were

re-evaluated and adjusted, and new rules were added.

The additional experience for large scale protein annotation gathered during the

analysis of the eukaryotic proteomes showed that additional benchmarking of pro-

teome annotation is required taking into accounts the enormous problems within

eukaryotic genomes (some of the origins of problems are associated directly with the

genome such as gene prediction). The 3D-GENOMICS architecture can be used for

a continuous benchmark, because different versions of an analysis can be managed
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and compared.

Different processing pipelines and information retrieval systems such as 3D-

GENOMICS to perform a fully automated annotation of sequences were developed

(see section 3.8.3). It is now important to extend these systems to integrate different

sources of information such as expression profiles, protein-protein interaction net-

works, pathways and protein structures to discover complex relationships between

these biological entities. An important step to integrate several heterogenous protein

sequence-, domain- and motif databases was the development of InterPro (Apweiler

et al., 2001).

The 3D-GENOMICS system will have to be adjusted to cope with extensive

data integration. However, it will be generally difficult to gather the required ex-

pert knowledge and resources for extensive data integration. Therefore it may be

more feasible to connect different domains of expertise (i.g. specialised databases

and analysis software) via specialised and distributed warehouses, each maintained

by a specialised research group. To guarantee transparent queries to relate biologi-

cal entities located in different warehouses hosted at different sites, communication

standards and protocols have to be developed. The DAS project (Dowell et al.,

2001) and XML in general are promising steps towards distributed data manage-

ment. Nevertheless, biological data integration goes beyond linking annotations

from different sources in the users web-browser (see Stein (2002) for a recent com-

mentary on web based bioinformatics resources). Such a system has to be fully open

(i.e. the source code must be available) as well as allowing for large scale queries.

There will be many technical challenges such as version management (e.g. manag-

ing different revised versions of a genome taking into account dependencies of the

downstream analyses).

The analysis described in chapter 4 is a top-down approach to classify and com-

pare proteomes. Based on SCOP superfamilies the comparison of the protein domain

repertoire of different proteomes includes very distant relationships and provides a

rather general view. On the superfamily level it is difficult to perform functional

comparisons. It is now important to choose a finer granularity for the analysis of

protein function by identifying families and sub-families within a superfamily. Func-

tional specificities may be encoded by just a few different residues between highly

related sequence families. For example, this work showed that there are more nu-
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clear receptor-binding domains in C. elegans than in human. However, different

functional families have been expanded in worm compared to human (these data

were not shown or discussed in chapter 4 because they are beyond the scope of this

work).

The functional context of these families and sub-families (for example the path-

ways these proteins and domains are found in) will show the extent of functional

flexibility of a superfamily and will provide evolutionary insights into the structure-

function relationship.

In the past the collection of experimental data was often the bottleneck in bio-

logical research. With the rapid development of high throughput technologies, the

computational data analysis becomes more a bottleneck. It will be interesting to

observe how bioinformatics will keep up with these challenges, but it will even more

exciting to participate.
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Appendix A

Supplementary material for

3D-GENOMICS

A.1 Database tables

Attribute Type Description

Alignment (Alignment): Stores information common to all kinds of alignments

FeatureId int ref. to a Feature

Sbj int ref. to a Pseq (subject of alignment)

SbjStart smallint start of alignment in subjects

SbjStop smallint stop of alignment in subject

Identity tinyint percent sequence identity

AutoAnnot (-): Dump of text information from other tables, generated by a script for fast annotation

search via the web

Tags varchar space separated list of genome names

PseqId int ref. to a Pseq of the genomes described by Tags

Descrip text a text description

Type varchar type of annotation (e.g. scop or pfam)

BlastHit (BlastHit): BLAST specific hit information

FeatureId int ref. to an Alignment

Evalue double e-value of bit score

Score float bit score

BlastRun (BlastRun): BLAST run information

RunId int ref. to a PseqRun

DbSize int size of sequence database in sequences

Status enum( ‘crash’,

‘void’, ‘empty’,

‘drifted’, ‘lim-

ited’, ‘blast’,

‘collecting’,

‘converged’,

‘impala’, ‘rps’ )

final status of BLAST analysis (or run inheriting from a BlastRun),

‘drifted’ existing confident hits got lost due to possibly corrupted

PSSM (PSI-BLAST), ‘collecting’ not converged (PSI-BLAST only)

and ‘converged’ (PSI-BLAST only), ‘blast’ means the hit was pro-

duced by BLAST (otherwise PSI-BLAST), ’rps’ means produced by

‘RPS-BLAST’ and ‘impala’ produced by IMPALA

ClassName (Feature, Run): Class names to reconstruct API objects

ClassNameId tinyint identifier

continued on next page
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continued from previous page

Attribute Type Description

Name varchar class name

Coil (Coil): Coiled-coil description

FeatureId int ref. to a Feature

Score float confidence score of this coil

CoilRun (CoilRun): Description of a Coils2 analysis

RunId int ref. to a PseqRun

NumHits int number of identified coiled-coils

DomainPartner (ScopStatRun): Domain partners (combinations) for SCOP domains

RunId int ref. to a DomainStat

AC varchar SCOP code for superfamily in DomainStat

AC2 varchar code/accession for other domain

Name varchar Name of other domain

Type enum( ‘scop’,

‘pfam’ )

type of other domain

Freq smallint total frequency of co-occurrence

DomainStat (ScopStatRun): Genome specific SCOP superfamily information

RunId int ref. to a GenomeRun

AC varchar family/superfamily code

Name varchar family/superfamily name

Type enum( ‘scop’,

‘pfam’ )

type of domain

FreqDom smallint number of domains in family/superfamily

RankDom smallint rank of FreqDom

FracDom float FreqDom normalised by number of all domains

FreqSeq smallint number of sequences with domain type AC

RankSeq smallint rank of FreqSeq

FracSeq float FreqSeq normalised by number of sequences with domains

FreqTM smallint number of domains in transmembrane proteins

RankTM smallint rank of FreqTM

AvgSeqId tinyint average sequence identity of domain type

StdevSeqId tinyint standard deviation of AvgSeqId

ScopPartners smallint number of co-occurring SCOP superfamilies

PfamPartners smallint number of co-occurring PFAM entries

Feature (Feature): Describes any kind of sequence feature with its location in the sequence

FeatureId int identifier

ClassNameId tinyint ref. to ClassName of feature object

Start smallint start (within sequence)

Stop smallint stop (within sequence)

RunId int ref. to Run that produced this feature

GSCount (GenomeSummary): Genome wide frequencies of different annotation features

GSCountId int identifier

RunId int ref. to a GenomeRun

Name varchar name of annotation feature

Number int number of observations for this annotation

Type enum( ‘Se-

quences’,

‘Regions’,

‘Residues’ )

‘Number’ refers to sequences, regions or residues

GSMember (GenomeSummary): Members of a GSCount entry

GSCountId int ref. to a GSCount

MemberId int ref. to a PseqId or FeatureId (depends on the ‘Type’ of the GSCount)

continued on next page
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continued from previous page

Attribute Type Description

Gaps (Alignment): Helper table for Alignment

FeatureId int ref. to an Alignment

QryGaps blob compressed list of gap positions and extent in query

SbjGaps blob compressed list of gap positions and extent in subject

GenomeRun (GenomeRun): Genome wide analysis or data summary

RunId int ref. to a Run

Tags varchar space separated list of genome names/tags

HMM (HMM): HMM associated information (currently not the HMM itself!). Stores annotation

of PFAM HMMs.

Acc varchar identifier

:::::
Name varchar short name

Description varchar annotation

Leng int length of HMM

HMMHit (HMMHit): Match to an HMM (from PFAM)

FeatureId int ref. to a Feature

Evalue double e-value of bit score

Score float bit score

HMMStart smallint start of hit within HMM

HMMStop smallint stop of hit within HMM

Acc char ref. to HMM

Host (Run): Client that executed a run

HostId smallint identifier

Name varchar name of host (or IP-address)

LCR (LCR): Low complexity region

FeatureId int ref. to a Feature

Score float confidence score of assignment

LCRun (LCRun): Run information of SEG (detection of low complexity regions

RunId int ref. to a PseqRun

NumHits int number of LCR features produced

MakeMat (PsiBlastRun): Binary checkpoint file of last PSI-BLAST iteration

RunId int ref. to a PsiblastRun

Checkpoint mediumblob checkpoint data (platform dependant!)

OMIMgenmap (OMIM): cytogenetic locations and other information for OMIM entries, see

http://www.ncbi.nlm.nih.gov/omim/ for details

ChrMap varchar numbering system

EntryDate date OMIM entry date

Loc varchar cytogenetic location (locus)

Symbols varchar gene symbols (short names)

Status enum( ‘C’, ‘P’,

‘I’, ‘I’, ‘L’ )

certainty of locus assignment

Title text title of disease or gene

MIM int MIM number (should be unique)

Method varchar method for genetic mapping

Comments text list of comments

Disorders varchar list of disorders

Mouse varchar mouse correlate

Ref varchar list of literature references

Params (Params): Analysis/Run specific parameters

ParamsId smallint identifies the set of parameters that belong together

Pkey varchar name of parameter (key)

Pvalue varchar value of parameter (may be NULL)

continued on next page

http://www.ncbi.nlm.nih.gov/omim/
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continued from previous page

Attribute Type Description

Pdesc (Pdesc): Protein description

PdescId int identifier

Acc varchar accession number of source database (usually a GI-number)

:::::
Name varchar list of all known names and identifiers, NCBI-style

Description text description line

PseqId int ref. to a Pseq

Date timestamp entry of modification date

TaxId int ref. to a node in taxon database

PdescTag (Pdesc): Linker for Pdesc Tag relationship

TagId int ref. to a Tag

PdescId int ref. to a Pdesc

PerlObject (PerlObject): Storage for a persistent perl object (serialised objects)

PerlObjectId int identifier

Class varchar class name of object

Perl mediumblob compressed object

PrositeMatch (PrositeMatch): A match of a PROSITE pattern

FeatureId int ref. to a Feature

AC char accession code of pattern

PrositeRun (PrositeRun): PROSITE pattern database scan

RunId int ref. to a PseqRun

NumHits int number of matches produced by this run

ProsperoHit (ProsperoHit): Hit from the prospero program (self alignment to find repeats)

FeatureId int ref. to an Alignment

Evalue double e-value of bit score

Score int bit score

ProsperoRun (ProsperoRun): Repeat analysis with prospero

RunId int ref. to a PseqRun

k float calculated k of scoring scheme

lambda float calculated lambda of scoring system

Pseq (Pseq): Protein sequence

PseqId int identifier

Seq text amino acid sequence as a string

md5 varchar hexadecimal 16 byte MD5 checksum of Seq

Date timestamp entry date

QuickBits int unsigned annotation bitmask, precompiled from Pdesc list

Len smallint un-

signed

length of Seq

PseqMask (GenomeSummary): Bitmask for generated annotation for each sequence residue po-

sition

RunId int ref. to a GenomeRun

PseqId int ref. to a Pseq

Mask blob compressed list of integers for sequence, each position is a bitmask for

a residue

PseqOMIM (Pseq, OMIM): Relationship between Pseq and OMIM

PseqId int ref. to a Pseq

MIM int OMIM identifier, ref. to OMIMgenmap

PseqRun (PseqRun): Protein sequence based analysis

RunId int ref. to a Run

PseqId int ref. to a Pseq

Start smallint un-

signed

start of analysed region
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Stop smallint un-

signed

stop of analysed region

PsiBlastHit (PsiBlastHit): A PSI-BLAST hit

FeatureId int ref. to a BlastHit

Iteration tinyint iteration of this hit

Flag set( ‘firstPS’,

‘last’, ‘lastSeen’,

‘best’ )

description of iteration, ‘firstPS’ is the 1st position specific iteration

this hit was found in (at least iter. 2), ‘last’ iteration, ‘best’ iter. is

where the hit has the best e-value, ‘lastSeen’ is the iter. after which

this hit disappeared)

PsiBlastRun (PsiBlastRun): PSI-BLAST analysis

RunId int ref. to a BlastRun

ItersRequest tinyint maximum number of requested iterations

ItersDone tinyint number of performed iterations

PSSM blob compressed text PSSM of last iteration

Region (Region): Cluster of alignments within a region produced by a SummaryRegionRun of the

API

FeatureId int ref. to a Feature

RepFeatureId int ref. to a Feature/Alignment

RegionFeature (Region): Member of a region

RegionId int ref. to a Region

FeatureId int member (ref. to a Feature/Alignment)

Run (Run): Superclass for any kind of analysis

RunId int identifier

ClassNameId tinyint ref. to a ClassName

Date datetime date when analysis was carried out

RunTime mediumint runtime of analysis

HostId smallint ref. to Host

ParamsId smallint ref. to Params

Error varchar optional error or status string

SecStr (SecStr): A secondary structure element

FeatureId int ref. to a Feature

State enum( ‘C’, ‘T’,

‘H’, ‘E’ )

Coil, Turn, Helix, Strand

Score blob compressed list of scores at each position from Feature.Start to Fea-

ture.Stop

SigPep (SigPep): Signal peptide

FeatureId int ref. to a Feature

Model enum( ‘gram+’,

‘gram-’, ‘euk’ )

best model (gram positive or negative or eukaryotic)

Score float confidence score of prediction

TMH (TMH): Transmembrane helix

FeatureId int ref. to a Feature

Ori enum( ‘in’, ‘out’

)

topology, N-terminus of first helix is inside or outside the cell

TMRun (TMRun): Transmembrane analysis

RunId int ref. to a PseqRun

Score float overall confidence of prediction

NumHits int number of predicted membrane helices

continued on next page
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Tag (Pdesc): A descriptive keyword or label for sequences, e.g. ‘Ecoli’ to label all sequences of the

genome.

TagId int identifier

Name varchar keyword

Type enum( ‘user’,

‘static’, ‘db’ )

keyword was set by a user, automatically or is a database name

Table A.1: Tables of the 3D-GENOMICS database. For a detailed description of the data-types
see the MySQL manual (http://www.mysql.com). For many data-types MySQL allows a size
definition in digits or characters (for char, varchar, text and blob), these are not shown in the
Type column. The table name is given in bold font with the managing class of the API in braces.
Primary key, non-unique keys and

:::::::
unique

:::::
keys are shown. ‘ref.’ is ‘reference’, ‘iter.’ is ‘iteration’.

Attribute Type Description

Classif: The SCOP classification

DomainCode varchar e.g. d3sdha

Release smallint e.g. 1.53

FullCode varchar numerical code, e.g. 1.001.001.001.001.001

ClassDescRef int ref. to Descrip (class name)

FoldDescRef int ref. to a Descrip (fold name)

SfamDescRef int ref. to a Descrip (superfamily name)

FamilyDescRef int ref. to a Descrip (family name)

ProteinDescRef int ref. to Descrip (protein name)

SpeciesDescRef int ref. to a Descrip (species name)

PDBCode varchar the PDB code, e.g. 3sdh

Region varchar the domain definition within the PDB entry, e.g. ‘a:’ or ‘a:143-

283’

Descrip: Names

Id int identity

Txt varchar text description, e.g. protein name

Table A.2: Tables of the SCOP database. The table name is given in bold font. Primary
keys and non-unique keys. ‘ref.’ is ‘reference’. The FullCode defines the root (1), class,
fold, superfamily, family and protein+species accession number separated by a ‘.’ (e.g.
‘1.002.012.033.004.008’). The classification is taken from ASTRAL flat files (Chandonia et al.
(2002), http://astral.stanford.edu/). Sequences and structures are not stored in the tables, but in
flat files. The identifier system has changed starting with release 1.55, and is not compatible with
the Classif table, which stores SCOP releases 1.48, 1.50 and 1.53.
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A.2 Classes and modules of the API

Method/Function Description

Alignment (Feature): Baseclass for alignment based classes such as BlastHit.

get redef. of baseclass method

getPairwise returns a pairwise alignment as an array

sprintPairwise returns a pairwise alignment as a string

fullSbj alignment with terminal gaps and gaps removed from the query.

calcIdentity recalculates sequence identity in percent

hssp scores an alignment by length and percent identity (Rost, 1999)

swapQrySbj swaps query and subject of an alignment

coverage returns alignment coverage in query and subject sequence

AnnotRegion (HomolRegion): A functionally annotated sequence region.

isAnnot true for this type of region

BlastHit (Alignment): A BLAST HSP (hit). No special methods.

BlastRun (PseqRun): A complete BLAST run.

makeRuns non oop funtion to generate a list of BlastRun objects for a sequence (extension of

baseclass function)

queueResourceOpt required computing resources

queueCommand redef. of baseclass method

getQryMaskedFeatures get feature objects that were used to mask query

getQrySeqString get query string as it was passed to BLAST

run redef. of baseclass method

getHits return list of BlastHits (or other hit types for classes inheriting from BlastHit)

getSummary extension of baseclass method

seaview display a list of hits as a multiple alignment using the ‘seaview’ program

clustalx display a list of hits as a multiple alignment using ‘clustalx’

Coil (Feature): A coiled-coil sequence region. No special methods.

CoilRun (PseqRun): A coiled-coil analysis of a sequence.

run redef. of baseclass method

DbConnection (-): A database connection object. Provides methods to retrieve data from and to insert

data into the database. It is the baseclass for most of the other classes, because most objects are stored in

the database. Database connections are managed via the Perl DataBase Interface (DBI).

new object constructor

sync synchronises the object with the database (reads from or writes to database)

get takes a list of object attribute names and returns their values

modify modifies an object (call sync afterwards!)

set sets value for an attribute (call sync afterwards!)

readOnly makes the object read only (changes do not get written to the database)

dbConnect connects to database

isConnected true if object is connected to database

refresh refreshes a database connection (if it was lost)

RaiseError makes connections verbose on errors (called by dbConnect)

dbLogging makes data modifying actions logged by the sql-server(called by dbConnect)

dbDisconnect disconnects from database

prepareForDump prepares object for PerlObject table (disconnects form database)

reconnect opposite to prepareForDump (reconnects persistent object to database)

dbHandle returns a Perl DBI database handle

dbSource returns a Perl DBI database source string

dbName returns the name of the database

dbHost returns the database host

dbUser returns the database user name

dbPasswd returns the database password for the user

continued on next page
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lastInsertId returns the last insert ID from AUTOINCREMENT tables.

selectRow executes an SQL SELECT statement and returns one row

doSQL executes any SQL statement, does not return a value

dbQuote quotes a string to be SQL compatible

now current date and time in a format readable by the SQL-server

DomDbRegion (Region): A Region that is a domain.

isDomain true for this type of domain

maxStoredFeatures returns the maximum number of stored members for this region

DomainStat (DbConnection): Objects of this class store high level information about a domain type

such as a particular SCOP superfamily. This class was mainly developed for web-purposes.

normalise normalises data by the number of genomes that were used for the analysis (the number

of Tags from the GenomeRun object)

getPartners gets a list of domain partners for a domain type

getLink gets the URL for an attribute to link to a script that gives more information

Feature (DbConnection): The baseclass for all feature types that describe a location within an object

(currently only Pseq objects).

remove removes feature object

overlaps returns the overlap (in residues) between two features

within returns true if the other feature is contained within the feature

len returns the length of the feature

getStringRep string representation of the feature (extended by subclasses)

getStringRepChar a single character representation (extended by subclasses)

getSummary summary information about a feature (implemented by inheriting classes)

clone returns a copy of the database synchronised object blessed to its correct class

cloneCopy returns a copy of the current object as it is (including modifications)

insertWebFeature inserts the web-representation of the feature into a string

webFeature the actual web-feature (extended by subclasses)

webLinkText the text of the URL (extended by subclasses)

webLinkUrl the URL itself (extended by subclasses)

webLeftEndChar left terminal character of the web-presentation (extended by subclasses)

webRightEndChar right terminal character of the web-representation (extended by subclasses)

webPadChar characters outside this feature (extended by subclasses)

webColour colour of the feature (extended by subclasses)

webLinkMouseOver-

Text

text to appear in browser on mouse-over (extended by subclasses)

name the name of the feature (class name, can be overwritten by other classes)

GapCoder (-): Not a class, helper module to manage gaps of alignments.

encode encodes an alignment or a list of gaps into a compact form

decode decodes an encoded alignment into a list of gap positions and gap-extensions

Genome (DbConnection): Simple representation of a genome.

getPseqs returns all Pseq object for this genome

makePseqRuns generates a particular run type for the genome

writeTable writes an SQL table with every PseqId of the genome, and returns the table name

writeFeatureTable writes an SQL-table that contains all requested features for all Pseq objects of the

genome, returns the table name

linkByBlast returns an SQL-table name with all homologues between the genome and a given

other genome.

GenomeRun (Run): Baseclass for all analysis that treat a genome or proteome as a whole.

alreadyRun implementation of baseclass object, returns true if the object is was already processed

before with the same parameters

queueStderrId where the stderr of the analysis is copied to

continued on next page



Supplementary material for 3D-GENOMICS 183

continued from previous page

Method/Function Description

queueStdoutId where stdout of the analysis is copied to

GenomeSummary (GenomeRun): Genome wide annotation summary and statistics.

getBitTemplates returns a hash with annotation types as keys and their corresponding bits in the

residue wise description of a sequence

getNextFreeBit returns the next bit to be used for a new annotation type

run redef. of baseclass method

writeCount writes a generated counts to the database

readCount reads the count for a particular annotation type from the database

getGSCountId returns a GSCountId for the requested ‘Name’/‘Type’ pair of annotation

getMemberIds returns a list of IDs that are members of this annotation type

getPfamRegion-

Members

returns a hash of PFAM entries found for within this genome

getScopRegion-

Members

returns a hash of SCOP domains found in this genome

getBitMask returns the residue wise bit mask of a Pseq object that is part of the genome

queueResourceOpt redef. of baseclass method

HMM (DbConnection): Simple representation of a hidden Markov model, currently contains PFAM

annotation information only.

noopGetDesciption fast non oop funtion, returns the HMMs description (annotation)

HMMHit (Feature): A high scoring match of a protein sequence to an HMM.

isAnnot true if the HMMHit is to a functional annotated HMM (should be moved to the

HMM class)

coverage returns length coverage of the query by the HMM and the HMM length coverage by

the query as two real numbers

HMMRun (PseqRun): Run class for ‘hmmpfam’ of the HMMer package.

run implementation of baseclass method

queueCommand redef. of baseclass method

getDomains returns HMMHit objects, temporarily modified to be non-overlapping

HomolRegion (Region): A sequence region with homologous sequences.

getRepPdesc returns the Pdesc object of the subject sequence the representative alignment

IMPALAHit (BlastHit): A Hit and HSP produced by IMPALA (subject is a sequence that is represen-

tative for the PSSM).

getPsiBlastRun returns the PsiBlastRun object that produced the checkpoint file used to generate

the IMPALA matrix

IMPALARun (BlastRun): Run class for IMPALA program.

run redef. of baseclass method

queueResourceOpt redef. of baseclass method

queueCommand redef. of baseclass method

LCR (Feature): A Low Complexity Region produced by an LCRun. No special methods.

LCRun (PseqRun): Run class for the SEG program.

run implementation of baseclass method

MultiRun (Run): Objects of this class contain several other Run objects that will all be executed on the

same client computer. This avoids overloading the queueing system if the runtime time for the actual Run

object that performs an analysis is short.

getRuns returns the Run objects to be executed

run redef. of baseclass method

alreadyRun returns the object if it was already run before

queueResourceOpt redef. of baseclass method

queueStderrId where stderr is copied to

queueStdoutId where stdout is copied to
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Names (-): Not a class. Contains hashes and arrays of organism names and tags (abbreviations) to group

genomes. Does not provide any functions.

Nobody (-): This package overwrites some routines of the DbConnection package (but it does not inherit

from DbConnection), and may be used for anonymous read only database access.

dbPasswd redef. of baseclass method (no password)

dbUser redef. of baseclass method (‘nobody’)

dbName redef. of baseclass method

OMIM (DbConnection): Representation of an OMIM entry.

remove raises and error (object cannot be removed)

getPseqs get Pseq objects linked to this OMIM object

setPseq link a Pseq object to this OMIM object

removePseq remove link between Pseq object and OMIM object

getByPseq non oop funtion to search a OMIM objects by PseqId

getByTextField non oop function to search OMIM objects by text

webLinkText same as Feature.webLinkText

webLinkUrl same as Feature.webLinkUrl

webLink same as Feature.webLink

PSSM3dHit (Alignment): A hit produced by a PSSM3dRun, a (usually remote) homologue of known

structure.

confidence returns a confidence measure in percent

PSSM3dRun (PseqRun): Run class to perform the 3D-PSSM analysis.

makeRuns non oop function to generate a list of PSSM3dRun objects for a sequence

queueResourceOpt redef. of baseclass method

queueCommand redef. of baseclass method

run implementation of baseclass method

Params (DbConnection): Parameter sets used by an analysis (Run object).

remove remove this object from the database

getAll get all parameter key/value pairs

hasKey true if the parameter key exists

get redef. of the baseclass method that does not raise an error if called with a non existing

attribute (makes ‘hasKey’ obsolete)

PdbRegion (Region): A Region defined by homology to sequences of known structure (PDB chains).

isStructure true for this kind of region

maxStoredFeatures redef. of baseclass method

myTag ‘pdb’

Pdesc (DbConnection): A description of a protein sequence, contains free text and different tags (key-

words).

remove removes the object from the database

getDb returns the tag of the source database this object come from

getTaxon returns the corresponding Taxon object if it exists

webLinkText same as Feature.webLinkText

webLinkUrl same as Feature.webLinkUrl

webLink same as Feature.webLink

webLinkMouseOver-

Text

same as Feature.webLinkMouseOverText

PerlObject (DbConnection): Helper class to distribute Run objects over a computer farm, stores un-

composed PerlObjects as Perl code.

remove removed the object from the database

PrositeMatch (Feature): A match to a PROSITE pattern. No special methods.

PrositeRun (PseqRun): Finding PROSITE patterns within a query sequence.

run implementation of baseclass method
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getPrositePatterns non oop function to retrieve the patterns from a flat file

ProsperoHit (Alignment): Alignment produced by the ‘prospero’ program. No special methods.

ProsperoRun (PseqRun): Runs the prospero program for a protein sequence.

run implementation of baseclass method

Pseq (DbConnection): A protein sequence.

remove removes object from the database (including all objects depending on this object)

getBioSeq generate a BioPerl object from this object

fseq write object in fasta format

getFeatures returns the list of features for this sequences (from all run objects)

getPsiBlastHits returns PsiBlastHit objects

getBlastHits returns BlastHit objects

getHits wrapper for the two methods above

getXBlastHits returns both, PsiBlast and Blast hit objects

getSeqsHittingMe returns Pseq objects for which a PsiBlastHit object has this Pseq object as subject

of the alignment

getHitsToMe similar to the above method, but it returns PsiBlastHit objects

getSummaryRegions returns the list of Region objects for this sequence

xmapFeatures uses a list of features and replaces the corresponding sequence positions with the ‘X’

character (sequence masking)

getRuns returns a list of Run objects

getDbs returns a hash of source database tags for this sequence

getPdesc returns a requested Pdesc object

getPdescs returns all Pdesc objects for this object

getTaxIds returns a hash of corresponding TaxIds (for Taxon objects)

makePseqRuns non oop function to generate a list of Run objects

getPSSMs returns a list of PSI-BLAST PSSMs for all sequence fragments of this sequence

getPSSM returns one PSI-BLAST PSSM that covers the whole sequence

getPSSMerror returns an error message if there was any while calling one of the two above methods

getOMIM returns OMIM objects linked to this object

seaview launched the ‘seaview’ multiple sequence alignment viewer and displays homologues

clustalx same as ‘seaview’, but using the ‘clustalx’ program

makeSCOPdom generates a SCOPdom object if this object corresponds to a SCOP domain

makeSCOPdoms if the object corresponds to a PDB chain, a list of corresponding SCOPdom objects

is generated

getBits returns a hash with source database tags and some other tags and corresponding bits

(shortcut to get the annotation status and the source databases for the object, this

bypasses the slow request of Pdesc objects)

SQLsetBits non oop function to set the bits described above for the object (should be run by the

administrator on Pseq or Pdesc table updates)

PseqFrag (Pseq): A region within a protein sequence.

set redef. of baseclass method, raises and error

remove redef. of baseclass method, raises and error

modify redef. of baseclass method, raises and error

getFull returns the full-length Pseq object

getBioSeq same as for a Pseq, but on a fragment

getOverlapping-

Features

returns feature objects that overlap with this sequence region

getWithinFeatures feature objects that are contained within this region

getFeatures same as getOverlappingFeatures

getBlastHits same as baseclass method, but filters to non-overlapping hits

getPsiBlastHits same as method above, but for PsiBlastHits
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getHits same as baseclass method, but filters non-overlapping hits

getSummaryRegions same as baseclass method, but filters non-overlapping regions

getHitsToMe same as baseclass method, but filters non-overlapping hits

getRuns same as getOverlappingRuns

getExactOrFullRuns gets all runs that are exactly mapped to this fragment or the whole Pseq object

getWithinRuns run objects contained within this region

getOverlappingRuns run objects overlapping with this region

getPSSM extends baseclass method, sub-matrix of the full length PSI-BLAST PSSM

xmapFeatures extends baseclass method

overlaps same as Feature.overlaps but for a Pseq fragment

within same as Feature.within but for a Pseq fragment

PseqRun (Run): A Run that is performed on a protein sequence, baseclass for many other Run objects.

alreadyRun implementation of baseclass method, returns object if it was already run with the

same Params object and Start/Stop definitions

queueStderrId redef. baseclass method

queueStdoutId redef. of baseclass method

makeRuns non object oriented function, implementation of baseclass function

overlaps similar to PseqFrag method

within similar to PseqFrag method

getPseqId fast method to retrieve the PseqId of the object

PsiBlastHit (BlastHit): A hit produced by the PSI-BLAST program. No special methods.

PsiBlastRun (BlastRun): Runs the PSI-BLAST program.

writeCheckpointFile retrieves a checkpoint and writes it to a file.

getCheckpoint retrieves a checkpoint

drifted tries to determine if the run drifted (use with caution!)

PsiPredRun (PseqRun): Runs the PSI-Pred secondary structure prediction program (requires a PsiBlas-

tRun).

run implementation of baseclass method

Region (Feature): A cluster of Features (currently alignments only), that define a region within a sequence,

base class for many specialised region types.

getFeatures list of features that are a member of this region

countsAs this region is only a fraction of a domain (e.g. a region from a discontinuous domain)

isDomain true if the region is a domain

isStructure true if region has known 3D-structure

isAnnot true if region is annotated

maxStoredFeatures default of maximum number of members to store

myTag a tag/keyword for this region (to be implemented by other classes)

getRepPdesc Pdesc object of the subject of the representative alignment

Run (DbConnection): The basic analysis object, to manage execution of the actual analysis. Baseclass

for all other runs.

makeRuns generate one or more run objects (to be implemented by other run classes)

remove remove this object from the database

getFeatures list of Feature object from this Run object

getSummary descriptive information about the object (to be implemented by other run classes)

run execute the analysis (to be implemented by other Run classes)

queue submit object to the queueing system

queueCommand the command submitted to the queueing system

queueName the name of the queue

queueStdoutDir directory to which stdout gets copied to

queueStderrDir directory to which stderr gets copied to

queueStderr filename of stderr
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queueStdout filename of stdout

queueStderrId unique name for object stderr

queueStdoutId unique name for object stdout

queueSleep pause between subsequent submissions to the queue

queuedMax maximum number of objects in the execution queue

queueResourceOpt required computing resources to execute the analysis

alreadyRun true if the analysis was already run before, e.g. if the object already exists in the

database (to be implemented by specialised classes)

clone copies and returns the database synchronised object blessed with the correct class

(similar to Feature.clone)

countFeatures number of Feature objects from this run

makeNonOverlapping-

Features

returns a list of read only non overlapping Feature objects (temporarily modifies the

Features Start/Stop)

getRunIdsByParams non oop function that returns a list of cloned Run objects that satisfy given parameter

key/value pairs of Params objects.

SCOPdom (Pseq): A sequence that is a SCOP domain. Links the 3D-GENOMICS main database to the

scop helper database. Currently provides attributes only (also see A.2)

ScopRegion (DomDbRegion): A sequence region defined by SCOP homologues.

isStructure true for this region type

getRepScopDom returns a representative SCOPdom object

getSuperfamilies the superfamily of the region

myTag ‘scop’

countsAs 1, or the fraction of a discontinuous SCOP domain

ScopStatRun (GenomeRun): High level analysis of SCOP superfamilies, requires many other analysis

to be done before (e.g. GenomeSummary).

run implementation of baseclass method

getHash a hash of DomainStat objects

getGS get corresponding GenomeSummary object

getDomainPairs gets all domain pairs for this run with one request

ScratchDb (DbConnection): Database connection to a user writable database (even ‘nobody’ is allowed

to write to the scratch database). Stores temporary user specific objects.

dbName redef. of baseclass method (‘scratch’)

dbUser redef. of baseclass method

dbPasswd redef. of baseclass method

SecStr (Feature): A Secondary structure element (produced by a PsiPredRun).

getResidueScore score for the secondary structure state at a residue position

SigPep (Feature): An N-terminal signal peptide. No special methods.

SigPepRun (PseqRun): Searches for signal peptides.

queueResourceOpt redef. of baseclass method

run implementation of baseclass method

SummaryRegionRun (PseqRun): Clusters alignments into different types of regions (specialised Region

objects).

run implementation of baseclass method

TMH (Feature): A transmembrane helix. No special methods.

TMRun (PseqRun): A transmembrane helix prediction for a sequence.

makeRuns redef. of baseclass method

run implementation of baseclass method

Taxon (DbConnection): Taxonomy object, interface to the taxon helper database.

remove redef. of baseclass method, raises and error

getParent get the Taxon object of parent node of the taxonomic tree

getChildren get all Taxon objects that have this Taxon as parent
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getRank the name of the rank of the object (e.g., ‘kingdom’, ‘genus’)

inSubTree true if the object is in a tree rooted by a given other node

isRoot reverse of ‘inSubTree’, true if object is root of a given other node

webLinkText same as Feature.webLinkText

webLinkUrl same as Feature.webLinkUrl

webLink same as Feature.webLink

Workstations (-): Not a class. Helper module to submit Run objects to a computer farm.

run submit several Run objects to the queueing system

fastaDB (-): Not a class. Inserts sequences and sequence descriptions together with specific user informa-

tion as objects into the database. Used for large scale database insertions and updates.

insertEntries insert a Pseq and with several Pdesc entries into the database

insert insert all entries of an annotated (description line) fasta formated sequence file into

the database

nextSeq returns the next fasta entry of the sequence file

pbPSSM (Feature): A PSSM generated by PSI-BLAST.

remove redef. of baseclass, raises and error

getResidue the amino acid at a given position

getScore the score for a given amino acid type at a given position

getScores all amino acid scores for a given position

getSubMatrix a sub-matrix that describes a given region of the sequence

Table A.3: Overview over modules and classes of the 3D-GENOMICS API. The class or module
name is given in bold font above each subtable, and the base class is given in braces. Only
methods and functions are described. Class attributes are usually the same as the attributes
of the corresponding SQL table (see A.1). Some specialised modules, classes or methods of the
API are not shown. For simplification the returned data types and the list of possible arguments
for methods are not explicitely shown. ‘redef’. means redefinition, ‘def.’ means definition. If a
class does not provide any special methods it may still redefine or extend baseclass methods. For
example most classes that inherit from Feature redefine some of the web* and getString* methods
as well as the getSummary method. Classes inheriting from Run redefine the getSummary method.
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Internet resources

URL Description

ftp://ftp.ebi.ac.uk/pub/software/unix/coils-2.2/ software to predict coiled-coils in protein sequences

ftp://ftp.ncbi.nih.gov/blast BLAST, PSI-BLAST and IMPALA executable programs

ftp://ftp.ncbi.nih.gov/blast/db/nr.Z non-redundant protein sequence database

ftp://ftp.ncbi.nih.gov/genomes/ Nucleic acid and protein sequences from completely sequenced

genomes (or nearly finished genome projects)

ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/ the old site for genome sequences

ftp://ftp.ncbi.nih.gov/pub/seg/ software to detect low complexity regions in protein sequences

ftp://ftp.ncbi.nih.gov/pub/taxonomy/ tables of the NCBI taxonomy database

ftp://ftp.ncbi.nlm.nih.gov/blast/db/ sequence databases for BLAST and PSI-BLAST (nucleotide

and protein)

http://astral.stanford.edu/ protein sequences for SCOP domains

http://bioinf.cs.ucl.ac.uk/psipred/ secondary structure prediction of protein sequences

http://genomes.rockefeller.edu/magpie/ Magpie, genome annotation software package

http://hmmer.wustl.edu/ HMMer software package for hidden Markov models

http://jura.ebi.ac.uk:8765/ext-genequiz/ GeneQuiz software for web based for protein annotation

http://pedant.mips.biochem.mpg.de genome and proteome annotation database

http://presage.berkeley.edu/ database for structural genomics projects

http://prodes.toulouse.inra.fr/prodom/doc/prodom.html ProDom, protein domain database

http://scop.mrc-lmb.cam.ac.uk/scop/ Structural Classification Of Proteins

http://smart.embl-heidelberg.de domain database

http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/ HMMs for SCOP and proteome assignments of SCOP domains

http://wit.integratedgenomics.com/GOLD list and status of completed and ongoing genome sequencing

projects

http://www.biochem.ucl.ac.uk/bsm/cath/ another structural classification of proteins

http://www.biochem.ucl.ac.uk/bsm/cath new/Gene3D/ CATH domain assignments to genomes

http://www.bioinf.man.ac.uk/dbbrowser/PRINTS database of protein domains and motifs

http://www.bioperl.org BioPerl software project

http://www.blocks.fhcrc.org BLOCKS domain and motif database

http://www.bmm.icnet.uk Biomolecular Modelling site at Cancer Research UK

http://www.cbs.dtu.dk/services/SignalP-2.0/ signal peptide prediction of protein sequences

http://www.cbs.dtu.dk/services/TMHMM/ transmembrane helix prediction of protein sequences

http://www.ebi.ac.uk European Bioinformatics Institute, general bioinformatics re-

source

http://www.ebi.ac.uk/interpro combined database of domains, motifs and protein sequences

http://www.ebi.ac.uk/proteome proteome annotation site

http://www.embl-heidelberg.de/ rost/ B. Rost homepage with supplementary material for alignment

accuracy

http://www.embl-heidelberg.de/predictprotein/predictprotein.html) Predict Protein, protein sequence annotation and structure

prediction

http://www.ensembl.org human genome annotation

http://www.enzim.hu/hmmtop/ transmembrane helix prediction in protein sequences

http://www.expasy.ch/swissmod/SM 3DCrunch.html results from large homology modelling of protein sequences

http://www.expasy.org/prosite PROSITE patterns for functional motifs

http://www.geneontology.org Gene Ontology project

http://www.integratedgenomics.com/ bioinformatics company

http://www.mysql.com relational database system

http://www.ncbi.nlm.nih.gov general bioinformatics resource, National Center for Biotech-

nology Information

http://www.ncbi.nlm.nih.gov/BLAST/ interactive BLAST and PSI-BLAST

continued on next page

ftp://ftp.ebi.ac.uk/discretionary {-}{}{}pub/software/unix/coils-2.2/
ftp://ftp.ncbi.nih.gov/blast
ftp://ftp.ncbi.nih.gov/blast/db/nr.Z
ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/
ftp://ftp.ncbi.nih.gov/pub/seg/
ftp://ftp.ncbi.nih.gov/pub/taxonomy/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://astral.stanford.edu/
http://bioinf.cs.ucl.ac.uk/psipred/
http://genomes.rockefeller.edu/magpie/
http://hmmer.wustl.edu/
http://jura.ebi.ac.uk:8765/ext-genequiz/
http://pedant.mips.biochem.mpg.de
http://presage.berkeley.edu/
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html
http://scop.mrc-lmb.cam.ac.uk/scop/
http://smart.embl-heidelberg.de
http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/
http://wit.integratedgenomics.com/GOLD
http://www.biochem.ucl.ac.uk/bsm/cath/
http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS
http://www.bioperl.org
http://www.blocks.fhcrc.org
http://www.bmm.icnet.uk
http://www.cbs.dtu.dk/services/SignalP-2.0/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.ebi.ac.uk
http://www.ebi.ac.uk/interpro
http://www.ebi.ac.uk/proteome
http://www.embl-heidelberg.de/~rost/
http://www.embl-heidelberg.de/predictprotein/predictprotein.html
http://www.ensembl.org
http://www.enzim.hu/hmmtop/
http://www.expasy.ch/swissmod/SM_3DCrunch.html
http://www.expasy.org/prosite
http://www.geneontology.org
http://www.integratedgenomics.com/
http://www.mysql.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/BLAST/
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continued from previous page

URL Description

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM resource for inherited human disease (OMIM)

http://www.ncbi.nlm.nih.gov/omim/ the old OMIM page (different interface)

http://www.openpbs.org load sharing system for distributed processing

http://www.rcsb.org/ database of protein structures

http://www.sanger.ac.uk/Projects/M tuberculosis M. tuberculosis sequence and annotation resource

http://www.sanger.ac.uk/Software/Pfam PFAM, protein family and domain database

http://www.sbg.bio.ic.ac.uk Structural Bioinformatics Group at Imperial College

http://www.sbg.bio.ic.ac.uk/3dpssm/ remote homology detection of protein of known structure

http://www.structuralgenomics.org/ resource for structural genomics

http://www.tigr.org/ TIGR genome sequencing centre

http://www.well.ox.ac.uk/rmott/ARIADNE/ protein sequence comparison software including repeat detec-

tion in proteins

Table B.1: URLs for Internet resources mentioned or used within this work.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
http://www.ncbi.nlm.nih.gov/omim/
http://www.openpbs.org
http://www.rcsb.org
http://www.sanger.ac.uk/Projects/M_tuberculosis
http://www.sanger.ac.uk/Software/Pfam
http://www.sbg.bio.ic.ac.uk
http://www.sbg.bio.ic.ac.uk/3dpssm/
http://www.structuralgenomics.org/
http://www.tigr.org/
http://www.well.ox.ac.uk/rmott/ARIADNE/
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Appendix C

Abbreviations

C.1 Amino acids

A ALA Alanine

C CYS Cysteine

D ASP Aspartate

E GLU Glutamate

F PHE Phenylalanine

G GLY Glycine

H HIS Histidine

I ILE Isoleucine

K LYS Lysine

L LEU Leucine

M MET Methionine

N ASN Asparagine

P PRO Proline

Q GLN Glutamine

R ARG Arginine

S SER Serine

T THR Threonine

V VAL Valine

W TRP Tryptophane

Y TYR Tyrosine

X - ‘ignored’ residue position

Table C.1: One letter and three letter codes for amino acids.
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C.2 Proteins, domains and other biomolecules

ARF-GAP Adenyl-Ribosylation-Factor, GTPase Activated Protein
ARM repeat Armadillo Repeat
ATP Adenosin Tri-Phosphate
BRACA1 Breast Carcinoma 1 gene product
CBS domain named after a protein (Cystathionine-β-Synthase) that contains this

domain
CUB probably named after the first proteins this domain was found in

(human complement components C1r and C2r, sea urchin uEGF and
human bone morphogenic protein)

CaLB Calcium/lipid-binding domain, CaLB)
DD-carboxypeptidase D-alanyl-D-alanine-cleaving carboxypeptidase
DEATH domain first described in TNF-mediated cell death signalling
EF-hand Protein domain named after two important helices E and F
EGF Epidermal Growth Factor
ERK2 Extracellular Signal-Regulated Kinase 2
EST Expressed Sequence Tag
ETS domain Erythroblast Transformation Specific
GPCR G-Protein Coupled Receptor
GSK-3β Glycogen Synthase Kinase 3-β
GTP Guanosin Tri-Phosphate
HPr Histidine-containing phosphocarrier proteins
HSP90 Heat-Shock Protein 90
KH domain K (ribonucleo protein) homology domain
LIM domain zinc finger domain named after the proteins containing this domain

(Lin-11 from C. elegans vertebrate Isl-1 and Mec-3 C. elegans)
MAP Mitogen-Activated Protein kinase
MBP1 Mlu1-box binding protein
MHC Major Histo-Compatibility Complex
NAD(P) Nicotinamide Adenine Dinucleotide (Phosphate)
NFkB Nuclear Factor κ-B
PDZ domain signalling domain also known as DHR or GLGF (named after ZO-1

a zonula occludent protein)
PH domain Pleckstrin homology domain
PK-like protein kinase-like
PKC Protein Kinase C
PKD domain first identified in the PKD1 protein (Polycystic Kidney Disease)
PMS1 Post Meiotic Segregation Protein 1
POZ domain Pox virus and Zinc finger
Pyk2 Protein Tyrosine kinase

continued on next page
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continued from previous page

PYP domain domain found in Photoactive Yellow Protein
RING domain ‘Really Interesting’ (zinc finger) domain
RIP REV protein (RNA binding protein) Interacting Protein
RMS Root Mean Square
RNI-like domain Ribonuclease Inhibitor
RNaseA Ribonuclease A
RNaseH Ribonuclease H
SH2 SRC (Scavenger Receptor) homology-2 domain
SH3 SRC (Scavenger Receptor) homology-3 domain
SpoIIaa stage II Sporulation Protein AA
SRCR Scavenger Receptor, Cysteine-Rich
TFIIA Transcription Factor IIA
TGF-b Transforming Growth Factor β
TIM Triose-phosphate Isomerase
TNF Tumour Necrosis Factor
TetR/NARL Tetracycline Resistance regulator and Nitrate/Nitrite metabolism

regulatory protein
TPR Tetratricopeptide repeat
WD repeat the motif of the repeat is defined by the C-terminal amino acids

tryptophan and aspartate
aa-tRNA Amino-Acyl transfer RNA (Ribonucleic Acid)
aaRS Amino-acyl-tRNA Synthetase
mRNA messenger RNA (Ribonucleic Acid)
p8-MTCP1 Mature T-Cell Proliferation-1 protein

Table C.2: Abbreviations of proteins, protein domains and other biomolecules. Capitalisation of
the explanations may give a hint how the abbreviation was derived. Some capitalised names are
nouns rather than abbreviations, and explanations are given where the origin of the name is not
clear.

C.3 Other abbreviations including tools, databa-

ses and programs

1D one dimensional
3D three dimensional
3D-PSSM three dimensional PSSM (Position Specific Scoring Matrix)
API Application Program Interface
ASTRAL Sequence and structure database, supplement to SCOP
ASV avian sarcoma virus

continued on next page
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continued from previous page

BLAST Basic Local Alignment Search Tool
BLIMPS BLocks IMProved Searcher
BLOCKS ‘alignment Blocks’ (no abbreviation)
BLOSUM Blocks Substitution Matrix
CASP Critical Assessment of Structure Prediction
CATH Class(C), Architecture(A), Topology(T) and Homologous superfamily

(H) (a structural classification of proteins)
CDS Coding Sequence
CGI Common Gateway Interface
DAS Distributed Annotation System
DBI Database Interface
EBI European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
ENSEMBL Human genome resource (not an abbreviation)
ERGO Genome annotation system from Integrated Genomics, Inc. (not an

abbreviation)
ETS domain Erythroblast Transformation Specific
FASTA Fast Alignment Search Tool
GO Gene Ontology
HIV Human Immune-deficiency Virus
HMM Hidden Markov Model
HMMer Hidden Markov Model software package
HSP High-scoring Segment Pair
HTML Hypertext Markup Language
ID Identifier
IMPALA Integrating Matrix Profiles And Local Alignments
IP-address Internet Protocol (-address)
Kb Kilo bases (1000 bases)
KEGG Kyoto Encyclopedia of Genes and Genomes (enzyme pathway database)
Mb Mega bases (million bases)
MD5 Message-Digest Algorithm
MG Mycoplasma genitalium
MULTICOIL Multiple Coiled-Coil (prediction)
MySQL Product name for a relational database management system
NCBI Natioanl Center for Biotechnology Information
NMR Nuclear Magnetic Resonance
NRPROT Non-Redundant Protein Database
OMIM Online Mendelian Inheritance in Man
ORF Open Reading Frame
OpenPBS Open Portable Batch System
PAM Point Accepted Mutation

continued on next page
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continued from previous page

PANTHER A protein classification database
PDB Protein Databank
PEDANT Protein Extraction, Description and ANalysis Tool
PFAM Protein Family database of alignments and HMMs
PIR Protein Information Resource
PRINTS, PRINTS-S finger Prints
PRODOM, ProDom Protein Domain (database)
PROSITE not an abbreviation (protein sequence pattern database)
PSI-BLAST Position Specific Iterated BLAST
PSI-Pred Position Specific Iterated Prediction
PSSM Position Specific Scoring Matrix
ProDom-GC ProDom for genome wide domain assignments
RMS Root Mean Square
RMSD Root Mean Square Deviation
RPS-BLAST Reversed Position Specific Blast
SAMT98 Sequence Alignment and Modelling software (using HMMs)
SAMT99 Sequence Alignment and Modelling software (using HMMs)
SCOP Structural Classification Of Proteins
SEG not an abbreviation, detection of composition biased segments in protein

sequences
SMART Simple Modular Architecture Research Tool
SQL Structured Query Language
TB Mycobacterium tuberculosis
TIGR The Institute of Genome Research
TIGRFAM TIGR Family (protein family database)
TM Transmembrane
TMHMM Transmembrane Hidden Markov Model
TOPPRED Topology Prediction (of transmembrane proteins)
TrEMBL Translated EMBL (protein database)
TrEMBL-NEW, new entries in Translated EMBL
URL Unified Resource Locator
WIT Genome annotation database from Integrated Genomics, Inc.
XML eXtended Markup Language
def. defined
iter. iteration
max. Maximum
redef. redefined

Table C.3: Abbreviations of programs, databases, non standard abbreviated organism names
and commonly used abbreviations. Capitalisation of the explanations may give a hint how the
abbreviation was derived. Some capitalised names are nouns rather than not be abbreviations,
and explanations are given where the origin of the name is not clear.
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