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Introduction
Unlike structures determined by X-ray crystallography, which
are deposited in the Brookhaven Protein Data Bank (Abola
et al., 1987) as a single structure, each NMR-derived structure
is often deposited as an ensemble containing many structures,
each consistent with the restraint set used. However, there is
often a need to select a single 'representative' structure, or a
'representative' subset of structures, from such an ensemble.
This is useful, for example, in the case of homology modelling
or when compiling a relational database of protein structures.
It has been shown that cluster analysis, based on overall fold,
followed by selection of the structure closest to the centroid
of the largest cluster, is likely to identify a structure more
representative of the ensemble than the commonly used minim-
ized average structure (Sutcliffe, 1993).

Two approaches to the problem of clustering ensembles of
NMR-derived structures have been described. One of these
(Adzhubei et al., 1995) performs the pairwise superposition
of all structures using C a atoms to generate a set of r.m.s.
distances. After cluster analysis based on these distances, a
user-defined cut-off is required to determine the final member-
ship of clusters and therefore the representative structures. The
other approach (Diamond, 1995) uses collective superpositions
and rigid-body transformations. Again, the position at which
to draw a cut-off based on the particular clustering pattern
was not addressed.

Whenever fixed values are used for the cut-off in clustering,
there is a danger of missing 'true' clusters under the threshold
imposed by the rigid cut-off value. Considering the highly
diverse nature of NMR-derived ensembles of proteins, it would
seem most appropriate to avoid the use of predefined values
for determining clusters. In fact, of the 302 ensembles we
have studied, the average pairwise r.m.s. distance across an
ensemble varied from 0.29 to 11.3 A (mean value 3.0, SD
1.9 A). Here we present an automated method for cut-off
determination that avoids the dangers of using fixed values
for this purpose.

We have developed a computer program that automatically,
systematically and rapidly (i) clusters an ensemble of structures
into a set of conformationally related subfamilies, and (ii)
selects a representative structure from each cluster. The pro-
gram uses the method of average linkage to define how clusters
are built up, followed by the application of a penalty function
that seeks to minimize simultaneously the number of clusters
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and the spread across each cluster. This program, known as
NMRCLUST, is available via the World Wide Web (URL:
http://neon.chem.le.ac.uk/) and by anonymous ftp from ftp.ox-
mol.co.uk. Although developed for the analysis of NMR-
derived structures, the program can be used to automatically
cluster any data set.

Materials and methods
An overview of the method is given in Figure 1.

Step 1. Distance determination
Clustering requires a set of 'distances' between members of
an ensemble. When a PDB file containing an ensemble of
structures is used as input, NMRCLUST derives these distances
by superposing each member of the ensemble onto each of
the other members of the ensemble in a pairwise manner
(McLachlan, 1982); the corresponding r.m.s. value is deter-
mined. This superposition is carried out, by default, on all
non-hydrogen atoms or, alternatively, on a user-defined set of
atoms (see Materials and methods). For an ensemble with N
members, this results in an NXN matrix of r.m.s. values.
NMRCLUST can also accept a predetermined matrix of
'distances' as input. This is useful in cases where objects other
than protein structures are to be clustered.

Step 2. Clustering
This distance matrix is used with the average linkage algorithm
for hierarchical cluster analysis. The method of average linkage
takes the distance between two clusters m and n to be:

dist(m,«) =
i = I j = 1

XY

where cluster m contains X members, and cluster n contains
Y members; dist(ij) is the r.m.s. distance between the two
members, i and j , of clusters m and n, respectively, after
superposition. At each stage of the clustering algorithm, a
search is performed for the two nearest clusters; these are
merged to form a single cluster.

At each stage of clustering, the 'spread' of each cluster is
calculated. The spread of a cluster m containing N members
is given by:

spreadm =
N(N -

where i and k axe members of cluster m. The average spread
is then given by:

cnurrij

X sPreadm
m = 1

AvSp,= -
cnum,
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Stepl

RMS distance matrix calculated by pairwise superposition
of all structures, N.

Step 2
r

Average linkage clustering using the RMS distance
matrix. At each stago (' (i= l.N-J) of the clustering, store
the Average Spread (AvSp)i values and the corresponding
number of clusters, nclus;.

Step 3
r

Normalisation of (AvSp)i values to lie in the range / to
N-l, denoted A v5/jfnormj(-.

Step 4
r

For each stage of clustering /= I,N-l find the penalty
value Pi=(AvSp(norm)i+ nclus)

Step 5
i r

Find the stage of clustering at which the minimum value
of P lies. This is the clustering cut-off point, icul=min(Pi).

Step 6
r

For each cluster at stage /„ , , find the structure closest to
the centroid of the cluster.

Representative
Structure(s)

Fig. 1. Flow chart illustrating the progress of the NMRCLUST algorithm.

where cnum, is the number of clusters at stage / of the
clustering (excluding outlying points, i.e. clusters that contain
only one member).

Step 3. Normalization of average spread
Once clustering is complete, the set of AvSp,- values is
normalized to lie within the range 1 to N - 1, where N is the
number of structures in the original data set. Normalization is
performed to give equal weight in the penalty function (Step
4) to the number of clusters and the average spread (a choice
of relative weights which appears to work well).

AvSp(norm),- =
A/-2

Max(AvSp) - Min(AvSp)
(AvSp,-Min(AvSp))+l,

where Max(AvSp) and Min(AvSp) are the maximum and
minimum values respectively of average speed in the set
{AvSpb AvSp2,... AvSp/v_i}.
Step 4. Penalty function
For each stage of clustering /, a penalty value, Z5,-, can now be
calculated as:

Pi = AvSp(norm),- + nclus,-,

where nclus,- is the total number of clusters at step i of the
clustering (including outlying points).
Step 5. Defining the cut-off value
The minimum penalty value in the set {Pu Pi,... PN_ i) is
chosen as the cut-off level.

21

19
30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Number of Clusters

Fig. 2. Progress of the penalty function during clustering of ensemble 4HIR
(Folkers et al, 1989). The minimum value of the penalty function is chosen
as the clustering cut-off point, as indicated.

Pfcu, = Min(P)

Thus, the stage /cut represents a state where the clusters
are as highly populated as possible, whilst simultaneously
maintaining the smallest spread. The smaller the spread of the
clusters, the more similar the conformations of its members;
the greater the population of a cluster, the less likely is the
chance of excluding a member of similar conformation.

Step 6. Representative structures
Once a cut-off value in the clustering has been determined in
this way, Eigen analysis (Sutcliffe, 1993) is performed on each
cluster at stage /cut. This allows for the determination of the
structure within each cluster that is closest to the centroid of
that cluster.

Example application
To illustrate the performance of the program, we present its
application to hirudin (Folkers et al., 1989; Protein Data Bank
accession number 4HIR). In this example, all non-hydrogen
atoms were used for the superposition. The penalty function
arrives at a unique minimum value (Figure 2), which is chosen
as the cut-off point for the clustering. It is interesting to note
the correlation between the clusters and the conformation of
hirudin (Figure 3). The four major clusters (i.e. excluding the
two clusters containing only one member) correspond to
different conformations of the region of the structure between
residues Ser32 and Glu35. This observed lack of conforma-
tional order is consistent with the absence of any long-range
nuclear Overhauser effects between this exposed 'finger' and
the core region of the protein (Folkers et al., 1989), as well
as the alternative hydrogen bonding patterns known to exist
in this region (Guntert et al., 1995).

Flexibility of input
In addition to the automatically selected cut-off point, the
program is able to accept a user-defined value for the minimum
distance between representative structures. NMRCLUST can
also superimpose the structures within the ensemble on the
basis of a user-defined set of atoms. These are specified
by the 'residue-residue:atom,atom' syntax. For example, to
superimpose on all carbon atoms from residues 1 to 31 and
residues 36 to 49, the syntax would be '1-31, 36-49:C*'. The
atoms to be used for superposition may be determined, for
instance, by using PROCHECK-NMR, the NMR version of
the PROCHECK program (Laskowski et al., 1993). This will
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Fig. 3. The superimposed backbones of 28 hirudin (4HIR) structures. This
illustrates the different conformations in the variable loop region between
residues Ser32 and Glu35 (encircled). The application of NMRCLUST to
this ensemble, with superposition on all non-hydrogen atoms, resulted in the
four clusters.shown and two outlying structures (not included for clarity).
Different line styles indicate different cluster membership. (NB: Model 18
has been omitted from this analysis because of missing side-chain atoms on
Gln49.)

allow the user to determine those residues that seem to be best
defined in terms of backbone r.m.s. distance, side-chain r.m.s.
distance and/or dihedral angle variability. Alternatively the
user could use the technique described by Billeter (1992),
which uses both backbone r.m.s. and all heavy atom r.m.s.
values. (We are currently developing an automatic method
for determining the optimum set of atoms to be used for
superposition.) There is also the capability of performing the
cluster analysis on a different, user-defined set of atoms to
those used for superposition (e.g. Modi et al., 1996).

Discussion

In this study, the decision to use the average linkage algorithm
was based on an assessment of the value of Min(P) produced
in 196 NMR-derived ensembles (available November 1994)
using three different clustering algorithms: single linkage,
complete linkage and average linkage. Of these three methods,
average linkage performed best, producing the lowest average
penalty value over the 196 ensembles. Another clustering
algorithm commonly used with protein structures is the Jarvis-
Patrick method (Allen and Doyle, 1991). However, this tech-
nique was not used in our studies because it requires a high
level of user intervention: user-defined values for both the
number of shared neighbours that two objects must possess to
be in the same cluster (the commonality threshold, CJP) and
the number of nearest neighbours being considered for each
cluster (KJP).

A criticism has been raised against the technique described
herein—the use of pairwise superposition followed by Eigen
analysis can lead to negative Eigenvalues and hence informa-
tionloss or distortion (Diamond, 1995). However, after running
NMRCLUST on all 302 NMR-derived ensembles available in
November 1995, no distortion of information above 10"6 A
(by comparing every distance in N - I dimensions to the
original distance matrix) was found. Consequently, in practice
negative Eigenvalues do not seem to be of particular concern.
However, should a distortion of information occur that exceeds
10"5 A, the program warns the user and, instead of determining
the structure closest to the centroid of the cluster, selects the
structure with the minimum average r.m.s. distance from all
other cluster members (Adzhubei et al., 1995). (The results of
applying NMRCLUST to the 302 NMR-derived ensembles
win be presented separately in a future paper.)

In conclusion, this method can be used to automatically
cluster any data set (e.g. an ensemble of NMR-derived struc-
tures or an ensemble of homology models) rapidly and consist-
ently, without the need for subjectively defined cut-offs.
NMRCLUST will take a file in PDB format containing an
ensemble of structures, and output the most representative
structure from each of the resulting clusters. These representat-
ive structures can subsequently be used, for example, in
homology modelling. Alternatively, NMRCLUST can take a
predetermined matrix of 'distances' and automatically output
the resulting clusters and their representative members. The
program is freely available via both the World Wide Web (http://
neon.chem.le.ac.uk/) and anonymous ftp (ftp.oxmol.co.uk).
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