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Abstract. Inductive Logic Programming (ILP) has been applied to dis-
cover rules governing the three-dimensional topology of protein structure.
The data-set unifies two sources of information; SCOP and PROMOTIF.
Cross-validation results for experiments using two background knowl-
edge sets, global (attribute-valued) and constitutional (relational), are
presented. The application makes use of a new feature of Progol4.4 for
numeric parameter estimation. At this early stage of development, the
rules produced can only be applied to proteins for which the secondary
structure is known. However, since the rules are insightful, they should
prove to be helpful in assisting the development of taxonomic schemes.
The application of ILP to fold recognition represents a novel and promis-
ing approach to this problem.

1 Introduction

Classification is an important activity in all scientific areas. In the case of protein
structures, the task is complex and at the moment is best performed by human
experts. However, the number of known protein structures is increasing rapidly
which creates a need for automatic methods of classification. The work presented
here focuses on one level of the classification, fold recognition. Inductive Logic
Programming (ILP) has been applied to derive new principles governing the
formation of protein folds such as common substructures and the relationship
between local sequence and tertiary structure.

The tertiary structure of proteins is itself arranged hierarchically. The build-
ing blocks, the amino acids, also termed residues, assemble linearly to form
the primary structure or sequence. Sequence segments adopt regular confor-
mations, helices and strands, collectively called secondary structures. ILP has
previously been applied to prediction of protein secondary structure [1, 2]. Sec-
ondary structures form motifs called supersecondary structures. Finally, these
interact together to form the tertiary structure.



Protein fold recognition involves finding the fold relationship of a protein
sequence of unknown structure. Two proteins have a common fold if they share
the same core secondary structures, and the same interconnections. Homologous
proteins share the same or similar folds. Protein fold recognition focuses on anal-
ogous proteins and remote homologues. It allows the inference of a relationship
between two proteins that could not be inferred by direct sequence compari-
son methods. Thus it allows structural and possibly functional information to
inferred for new protein sequences.

Approaches to protein fold recognition can be classified into two broad classes.
The first class of approaches considers sequential information, see [3, 4] for a re-
view. Information, often called profile, is derived from the primary sequence,
secondary structure and solvent accessibility. A database of target profiles is
built for all known folds using experimental data. Dynamic programming algo-
rithm is then used to align two profiles, probe and target. The information about
the probe is derived from prediction methods. The second class of approaches
uses pair potentials which sums all the propensity scores of residues pairs at a
certain distance, see [5] for a review.

Machine learning techniques have been applied to the problem. Hubbard et
al. [6] used Hidden Markov Models (HMM) to create a model of a multiple
sequence alignment which is subsequently used to retrieve related sequences
from the protein structure database. The HMM scores are combined with those
obtained by comparing the predicted secondary structure, based on the multiple
sequence alignment, to the experimental secondary structure. Di Francesco et
al. [7] also used HMM but at a different stage of the recognition process. They
used them to built a model of all observed secondary structures of a given fold.
Secondary structure is predicted for the probe and evaluated using the models
of all targets. Rost and Sander [8] used neural networks and information from
predicted secondary structure plus predicted solvent accessibility. These methods
are based on sequence alignment, either of the polypeptide chain, secondary
structure or solvent accessibility, they resemble to the first approach mentioned
above.

A different approach has been undertaken by Dubchak et al. [9], they used
neural networks together with global descriptors. The global descriptors are com-
position, transition and distribution of physico-chemical properties such as hy-
drophobicity, polarity and predicted secondary structure.

Our approach combines both, sequential and global descriptors. This paper is
organised as follows. Section 2 gives the details of the ILP system we used. Sec-
tion 3 introduces the new data-set. Section 4 presents the results of the learning
experiments. We conclude, Section 5, with a discussion of the advantages of ILP
to resolve the problem at hand and discuss the anticipated future developments.

2 ILP System

The experimentation was carried out using Progol4.4 which is the latest of the
family of Progol ILP systems [10]. Progol4.4 is distinguished from its predecessors



Progol4.1 and Progol4.2 by its use of constraints for numeric parameter estima-
tion. This is an adaptation of the ‘lazy-evaluation’ mechanism, first proposed by
Srinivasan and Camacho. For instance, suppose we want to find upper bounds
for the predicate lessthan/2. First, use declarations such as the following.

:- modeb(1,interval(#float =< +float =< #float))?
:- constraint(interval/1)?

The constraint declaration says that any interval/1 atom in the most-specific
clause should have a Skolem constant in place of the upper and lower bound
constants (#float’s above). In the search, during any refinement which introduces
a constraint atom, the flag solving is turned on, and the user-defined predicate
is given all substitutions from positive and negative examples as a list of lists of
lists (takes the form [P,N] where P is from the positive examples and N from the
negatives, and P,N are lists of lists, each list giving all substitutions related to
a particular example), and returns an appropriate substitution for the constant.
This constant is used in place of the Skolem constant in subsequent testing of
the refined clause and its refinements. Thus definitions for constraint predicates
have to have at least two clauses, having the guards ‘solving’ and ‘not(solving)’
to define respectively the procedure for computing the parameter and the normal
application of the predicate.

3 Data-Set

A Prolog database has been constructed by translating automatically the output
of the computer program PROMOTIF [11] and the database SCOP [12].

The data-set is meant to be used throughout several projects. The translation
retains most of the structure of the data. Program transformations are later
applied to reformat the data for each specific project.

In principle, the data-set can be used to learn any feature implemented by
SCOP and PROMOTIF. In practice, because learning experiments necessitate
supervision, we are aiming at only learning Prolog definition for a limited subset
of these features. However, the data are being made available in the hope that
it will encourage further experimentation1.

The data-set should be useful on its own. Prolog has already proven to be
an excellent tool to manage protein structure databases [13, 14].

3.1 Structure Classification

The classification of protein structures is a complex task. The main classification
schemes are SCOP [12] and CATH [15]. The former classification is performed
manually while the second is semi-automated. For this work we refer to SCOP,
it is used to relate structures and folds.
1 See http://www.icnet.uk/bmm/people/turcotte/ilp98/



The basic unit in SCOP is a domain, a structure or substructure that is
considered to be folded independently. Small proteins have a single domain, for
larger ones, a domain is a substructure, also termed region, indicated by a chain
id and a sequence interval range. Domains are grouped into families. Domains of
the same family have evolved from a common ancestral sequence. In most cases,
the relationship can be identified by direct sequence comparison methods. The
next level is called a superfamily. Members of a superfamily are believed to have
evolved from a common ancestry, but the relationship cannot always be inferred
by sequence comparison methods alone; the expert relies on other evidences,
functional features for example. The next level is a fold, proteins share the same
core secondary structures, and the same interconnections. The resemblance can
be attributed to convergence towards a stable architecture. Finally, folds are
conveniently grouped into classes (such as all-α and all-β) based on the overall
distribution of their secondary structure elements. Figure 1 shows the Prolog
representation of a SCOP entry.

scop(Class, Fold, Super, Family, Protein, Species, PdbId, Region)

Fig. 1. A domain entry in the SCOP database.

A Perl program has been written which creates a Prolog representation from a
SCOP HTML file. In this work we used SCOP database 1.35 generated by scopm
1.087. The four major classes contain 9153 domains, covering 630 families and
298 folds.

3.2 Structural Attributes

PROMOTIF is used to calculate the structural attributes used in this work.
Given a set of coordinates, PROMOTIF generates a series of files, each contain-
ing a particular set of structural features. These features are secondary struc-
ture, β- and γ-turns, helical geometry and interactions, β strands and β-sheet
topology, β-bulges, β-hairpins, β-α-β units, ψ-loops and main-chain hydrogen
bonding patterns [11].

A Perl program has been written that translates these free format files to
Prolog clauses, Fig. 2 shows a sub-set of PROMOTIF attributes.

3.3 Selection

Because crystallographers2 do not select randomly the proteins they study, the
databases are biased. Crystallographers select proteins because of their con-
nection to a particular molecular pathway, a particular disease or their overall
scientific interest in general.
2 Crystallography, the study of X-ray diffraction patterns, is the main source of our

knowledge of protein structure.



sst(Pdb, Chain, Pos, Aa, Structure).

helix(Pdb, Num, Chain, Pos, Chain, Pos, Len, Type).

helix_pair(Pdb, Num, Num, Dist, Angle, Region, Region, Num, Num).

strand(Pdb, Num, Sheet, Chain1, Lo, Chain2, Hi, Len).

hairpin(Pdb, Beta1, Beta2, Len1, Len2).

sheet(Pdb, Label, N, Type).

bturn(Pdb, Chain, Pos, Type).

Fig. 2. Examples of PROMOTIF attributes represented as Prolog clauses.

To remove redundancy a single representative domain has been selected per
protein, as defined in SCOP. The procedure was carried out with the computer
system Darwin [16]. All sequences of a protein are gathered and compared all
against all. The sequence with maximum average similarity score to all other
members of the set is selected as the representative element.

Next, to ensure enough diversity, folds having less than 5 families were re-
moved. Table 1 lists all the selected folds and the cross-validation accuracy mea-
sures.

Negative examples were chosen randomly from proteins of the same class
but having a different fold. The rational is that it is more difficult to distinguish
between two folds of the same class than it is to distinguish between folds of
different classes and is justified by the existence of accurate method for class
prediction. Finally, in accord with previous experiments we selected the number
of negative examples proportional to the number of positive examples.

Rules were learnt that discriminate between members and non-members of
a fold. The expected accuracy of a random prediction should be 50%.

4 Learning Experiments

Progol was applied to all folds using two background knowledge sets. The first
set involved global attributes of protein structure. The second included consti-
tutional information as well. For each fold, rules were learnt that discriminate
between members (positive examples) and non-members (negative examples).

4.1 Global Attributes

We first present a learning experiment that involves only global attributes.
Learning here is essentially attribute-value based. We used the total number
of residues, total number of secondary structures of both types, β and α, and
three different constraints. Figure 3 lists them all. As we will see, it is possible
to derive rules that are effective and in some cases provide interesting insights.

For 17 out of 23 folds, Progol produced a descriptive rule; indeed, in this
experiment, Progol produced a single rule per fold, with overall cross-validation
accuracy of 70.76%, see Table 1. One such rule is that of the Immunoglobulin-
like β-sandwich fold. This single rule covers most of the positive examples and



Table 1. Cross-validation predictive accuracy measures for global and combined in-
formation for all folds.

Global Combined
Folds Fam Dom Acc (%) Acc (%)

All-α:
Four-helical bundle 7 12 95.83 ± 4.08 95.83 ± 4.08
EF Hand-like 7 14 78.57 ± 7.75 78.57 ± 7.75
Three-helical bundle 13 27(26) 90.57 ± 4.02 90.57 ± 4.02

All-β:
Diphtheria toxin 5 6 50.00 ± 14.43 41.67 ± 14.23
Barrel-sandwich 4 8 - ± - 68.75 ± 11.59
beta-Trefoil 5 9 66.67 ± 11.11 66.67 ± 11.11
ConA-like 5 8 75.00 ± 10.83 50.00 ± 12.50
SH3-like barrel 5 13 84.62 ± 7.08 73.08 ± 8.70
OB-fold 9 18 - ± - 61.11 ± 8.12
Immunoglobulin† 13 41 78.75 ± 4.57 71.25 ± 5.06
α/β:
Restriction endonucleases 5 5 20.00 ± 12.65 80.00 ± 12.65
alpha/beta-Hydrolases 8 9 - ± - 55.56 ± 11.71
Ribonuclease H-like motif 11 16 43.75 ± 8.77 75.00 ± 7.65
Flavodoxin-like 11 14 67.86 ± 8.83 60.71 ± 9.23
P-loop 4 15 - ± - 50.00 ± 9.13
Rossmann-fold 7 20 80.00 ± 6.32 72.50 ± 7.06
(TIM)-barrel† 24 49 80.00 ± 4.22 78.89 ± 4.30
α+ β:
FAD-linked reductases 5 5 100.00 ± 0.00 90.00 ± 9.49
Lysozyme-like 6 7 92.86 ± 6.88 100.00 ± 0.00
Cystatin-like 5 7 35.71 ± 12.81 71.43 ± 12.07
Metzincin-like 6 11 77.27 ± 8.93 86.36 ± 7.32
beta-Grasp 6 13 - ± - 42.31 ± 9.69
Ferredoxin-like 17 21 - ± - 61.90 ± 7.49
Overall: 70.76 ± 1.79 71.53 ± 1.72

† 10-fold cross validation, other values were obtained by leave-one-out procedure.
Fam is total number of families.
Dom is total number of domains (positive examples), in the case of three-helical bundle,
the number of negative examples is one less because of a shortage of data.
Acc is the cross-validation accuracy, defined as the sum of true positives and true
negatives over the total. In some cases, Progol was unable to infer any rule, this is
indicated with minus sign.
The overall cross-validation accuracy values are calculated from the sum of all the
contingency tables, thus it also accounts for cases where Progol was not able to produce
any rule. ± values are standard errors of cross-validation accuracy.



:- modeh(1,fold(#fold_t,+dom_t))? % relates folds and domains

:- modeb(1,len(+dom_t,-nat))? % total number of residues

:- modeb(1,nb_alpha(+dom_t,-nat))? % total number of helices

:- modeb(1,nb_beta(+dom_t,-nat))? % total number of strands

:- modeb(1,interval(#nat =< +nat =< #nat))?

:- modeb(1,interval_l(+nat =< #nat))?

:- modeb(1,interval_r(#nat =< +nat))?

Fig. 3. Mode declarations.

says that a domain adopts an Immunoglobulin-like β-sandwich fold if its length,
measured in number of residues, is between 50 and 173, has one or no α-helix
and seven to ten β-strands. The Prolog representation is shown in Fig. 4.

fold(’Immunoglobulin-like beta-sandwich’,A) :-

len(A,B), interval(50=<B=<173),

nb_alpha(A,C), interval(0=<C=<1),

nb_beta(A,D), interval(7=<C=<10).

Fig. 4. The rule induced by Prolog for the Immunoglobulin-like β-sandwich fold.

Three rules were produced that are of a particular interest. They say that for
these folds there is a significant number of cases where the number of helices and
strands is the same. The relation is not trivial as the total number of secondary
structures also varies (see Fig. 5). In the case of β/α (TIM)-barrel the rule says
that the number of α-helices is the same as the number of β-strands and this
number is between eight and sixteen. It suggests that these folds are made of
repetitive motifs, this can be programmed in the background knowledge and will
be tested in future experiments.

fold(’Flavodoxin-like’,A) :-

nb_alpha(A,B), nb_beta(A,B), interval_l(B=<6).

fold(’NAD(P)-binding Rossmann-fold domains’,A) :-

nb_alpha(A,B), nb_beta(A,B), interval(5=<B=<7).

fold(’beta/alpha (TIM)-barrel’,A) :-

nb_alpha(A,B), nb_beta(A,B), interval(8=<B=<16).

Fig. 5. Same number of strands and helices. The top rule says that a domain A adopts
a Flavodoxin-like fold if it has B helices, B strands and B is less than or equal to 6.
All three folds belong to the same class, α/β.



However good these rules are to discriminate between folds, they do not
provide much structural insights; although the three rules in Fig. 5 suggest an
element of symmetry. We recall that our objective is to derive new principles
governing the formation of protein folds and thus we now move on to a more
complex representation which facilitates their discovery.

4.2 Combined Attributes

We now present the second learning experiment that incorporates constitutional
(relational) as well as global information (attribute-value). New attributes are
introduced. The predicate adjacent/6 serves three purposes. First, the predicate
is used to introduce two secondary structure identifiers in a rule. Second, the
predicate tells us that the two units are consecutive. It gives the location of the
first element, the location is allowed to vary slightly and this variation depends
on its position in the sequence, the closer to the end the more variation is allowed.
Finally, the predicate also indicates the secondary structure type of each unit.

Two consecutive secondary structures are separated by a coil, a sequence
of amino acids which varies in length, this information is represented by the
predicate coil/3.

Three properties of secondary structures have been considered here: average
hydrophobicity, hydrophobic moment and length, respectively represented by
ave h/2, h mom/2 and unit len/2. The numerical values of the parameters were
substituted by symbolic constants. The constant very hi was assigned if the
value of the parameter was greater than or equal to the mean plus two standard
deviations, hi if the value was greater than or equal to the mean plus one
standard deviation, very lo if the value was less than or equal to the mean
minus two standard deviations and lo if the the value of the parameter was less
than or equal to the mean minus one standard deviation. Values between the
mean minus one standard deviation and the mean plus one standard deviation
were omitted to speed up the calculations. Following the same line or reasoning
as Section 3.3, the mean and standard deviation were calculated for proteins of
the same class.

In the previous section, rules were obtained for 17 out of 23 folds. With the
new attributes, we now have rules for all the folds. The overall accuracy is not
significantly higher, see Table 1. Previously, one rule per fold was produced, we
now have some folds having up to three rules.

Figures 7 and 6 illustrate the format of rules produced. We recall that the aim
of the learning process is to discriminate between members and non-members of
a fold where negative examples are selected from elements of the same class. In
the four-helical up-and-down bundle, the distinctive feature is the presence of a
rather long helix around position five, followed by another helix. In EF-hand,
it is the strand/helix pair located at the start or at the end of the molecule
which is the distinctive feature. Finally, in DNA-binding 3-helical bundle, two
populations are represented, the largest one is distinguished by its length and
the fact that it has exactly three helices. The second population is distinguished



by its pair of β-strands, connected by a short coil, located at the beginning of
the molecule.

fold(’Four-helical up-and-down bundle’,A) :-

adjacent(A,B,C,5,h,h), unit_len(B,hi).

fold(’EF Hand-like’,A) :-

adjacent(A,B,C,1,h,e), nb_alpha(A,D), interval(4=<(D=<9)).

fold(’EF Hand-like’,A) :-

adjacent(A,B,C,9,e,h).

fold(’DNA-binding 3-helical bundle’,A) :-

len(A,B), interval(38=<(B=<111)),

nb_alpha(A,C), interval(3=<(C=<3)).

fold(’DNA-binding 3-helical bundle’,A) :-

adjacent(A,B,C,2,e,e), coil(B,C,4).

Fig. 6. Prolog representation of the rules of all-α class.

5 Conclusion

We have applied Inductive Logic Programming to the problem of fold recogni-
tion. This work is preliminary, but it shows that Progol is capable of producing
rules that are both accurate and descriptive. The rules produced are non-trivial.
Nevertheless they are easily interpretable by the expert in terms of structural
concepts: edge strands, hairpins, etc.

The learning experiment was presented in two steps, global and constitutional
attributes, two rather different ways to describe proteins. Attribute learners,
such as C4.5 or CART, are suitable for use with global attributes, but it would
be difficult to introduce concepts related to constitutional information. Other
machine learning techniques address this problem. Hidden Markov Models, for
example, are most suitable for this form of information. Here, we have shown an
application that integrates both types of information transparently, and often
this information has been used in a complementary way.

To tackle this problem a new database has been built that unifies multiple
sources of information. The database is general and allows queries that involve
structural features and taxonomic information. We hope that it will be useful
both inside and outside the machine learning community.

The work presented here also raises interesting questions. It suggests that
it is possible to distinguish between folds using small patterns of secondary
structure. These patterns are present in most, or all, proteins of a fold but



(a) (b) (c)

Fig. 7. Schematic representation of the domains of the all-α class. The structural fea-
tures used for the construction of the rules are shaded. (a) Four-helical up-and-down
bundle, (b) EF Hand-like and (c) DNA-binding 3-helical bundle. The cylinders repre-
sent α-helices, the arrows represent β-strands and the coil regions are represented as a
thin line.

not in others. It would be interesting to know if these also correspond to well
defined and predictable segments. Since these patterns are conserved, it is sound
to postulate that the multiple sequence alignment in these regions will be well
defined as well and should be suitable for evolutionary based secondary structure
prediction methods. Such method for fold recognition would depend less on the
overall accuracy of the secondary structure prediction program used. The use
of experimental secondary structure is justified in the context where it is used
as an aid to develop taxonomic schemes. The evaluation of the method using
predicted secondary structure is the next step in this project. In addition, for
protein fold predictions, these rules could be used in conjunction with other fold
recognition methods, based on profiles or pair potentials.

Rules have been learnt independently for each fold. As a result, the fold
predictions from different sets of rules are overlapping. We need to quantify
this overlap but most importantly we need to consider a resolution mechanism.
First-order decision lists paradigm, as described by Mooney and Califf [17], is a
good candidate. Rules are ordered in increasing level of coverage. Rules with low
coverage are encountered first. They are considered as exception to more general
rules. In [17], each rule ends with a cut, hence producing a single answer. In the
field of protein recognition it is most common to return the list of all possible
folds.

Several developments are planned. The relation between the number of strands
and helices detected by Progol suggested that symmetry and segmentation should



be added to the background knowledge. Another improvement would be to make
a more effective use of the structural information available. For example, we want
to make use of structural alignments and equivalence between secondary struc-
tures. The richness of this paradigm allows to express hierarchical and non-local
information. This is a direction of research that we intend to investigate further.
We particularly want to explore the recognition of common substructures.
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